Discovery and development of COVID-19 vaccine from laboratory to clinic.
COVID-19
SARS-CoV-2
coronavirus
reverse vaccinology
vaccine
Journal
Chemical biology & drug design
ISSN: 1747-0285
Titre abrégé: Chem Biol Drug Des
Pays: England
ID NLM: 101262549
Informations de publication
Date de publication:
13 Nov 2023
13 Nov 2023
Historique:
revised:
01
08
2023
received:
30
01
2023
accepted:
13
10
2023
pubmed:
13
11
2023
medline:
13
11
2023
entrez:
13
11
2023
Statut:
aheadofprint
Résumé
The world has recently experienced one of the biggest and most severe public health disasters with severe acute respiratory syndrome coronavirus (SARS-CoV-2). SARS-CoV-2 is responsible for the coronavirus disease of 2019 (COVID-19) which is one of the most widespread and powerful infections affecting human lungs. Current figures show that the epidemic had reached 216 nations, where it had killed about 6,438,926 individuals and infected 590,405,710. WHO proclaimed the outbreak of the Ebola virus disease (EVD), in 2014 that killed hundreds of people in West Africa. The development of vaccines for SARS-CoV-2 becomes more difficult due to the viral mutation in its non-structural proteins (NSPs) especially NSP2 and NSP3, S protein, and RNA-dependent RNA polymerase (RdRp). Continuous monitoring of SARS-CoV-2, dynamics of the genomic sequence, and spike protein mutations are very important for the successful development of vaccines with good efficacy. Hence, the vaccine development for SARS-CoV-2 faces specific challenges starting from viral mutation. The requirement of long-term immunity development, safety, efficacy, stability, vaccine allocation, distribution, and finally, its cost is discussed in detail. Currently, 169 vaccines are in the clinical development stage, while 198 vaccines are in the preclinical development stage. The majority of these vaccines belong to the Ps-Protein subunit type which has 54, and the minor BacAg-SPV (Bacterial antigen-spore expression vector) type, at least 1 vaccination. The use of computational methods and models for vaccine development has revolutionized the traditional methods of vaccine development. Further, this updated review highlights the upcoming vaccine development strategies in response to the current pandemic and post-pandemic era, in the field of vaccine development.
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
e14383Informations de copyright
© 2023 John Wiley & Sons Ltd.
Références
Ada, G. (2005). Overview of vaccines and vaccination. Molecular Biotechnology, 29(3), 255-272. https://doi.org/10.1385/mb:29:3:255
Allison, A. G., & Gregoriadis, G. (1974). Liposomes as immunological adjuvants. Nature, 252(5480), 252. https://doi.org/10.1038/252252a0
Andreatta, M., & Nielsen, M. (2016). Gapped sequence alignment using artificial neural networks: Application to the MHC class I system. Bioinformatics, 32(4), 511-517.
Anywaine, Z., Whitworth, H., Kaleebu, P., Praygod, G., Shukarev, G., Manno, D., Kapiga, S., Grosskurth, H., Kalluvya, S., Bockstal, V., Anumendem, D., Luhn, K., Robinson, C., Douoguih, M., & Watson-Jones, D. (2019). Safety and immunogenicity of a 2-dose heterologous vaccination regimen with Ad26.ZEBOV and MVA-BN-filo Ebola vaccines: 12-month data from a phase 1 randomized clinical trial in Uganda and Tanzania. The Journal of Infectious Diseases, 220(1), 46-56. https://doi.org/10.1093/infdis/jiz070
Araújo, C. L., Alves, J., Nogueira, W., Pereira, L. C., Gomide, A. C., Ramos, R., Azevedo, V., Silva, A., & Folador, A. (2019). Prediction of new vaccine targets in the core genome of Corynebacterium pseudotuberculosis through omics approaches and reverse vaccinology. Gene, 702, 36-45. https://doi.org/10.1016/j.gene.2019.03.049
Arora, P., Sardana, K., Mathachan, S. R., & Malhotra, P. (2021). Herpes zoster after inactivated COVID-19 vaccine: A cutaneous adverse effect of the vaccine. Journal of Cosmetic Dermatology, 20(11), 3389-3390. https://doi.org/10.1111/jocd.14268
Artaud, C., Kara, L., & Launay, O. (2019). Vaccine development: From preclinical studies to phase 1/2 clinical trials. Methods in Molecular Biology (Clifton, N.J.), 2013, 165-176. https://doi.org/10.1007/978-1-4939-9550-9_12
Avci-Adali, M., Behring, A., Steinle, H., Keller, T., Krajeweski, S., Schlensak, C., & Wendel, H. P. (2014). In vitro synthesis of modified mRNA for induction of protein expression in human cells. Journal of Visualized Experiments, 93, e51943. https://doi.org/10.3791/51943
Azevedo, T. C. P., Freitas, P. V., Cunha, P. H. P. D., Moreira, E. A. P., Rocha, T. J. M., Barbosa, F. T., Sousa-Rodrigues, C. F., & Ramos, F. W. D. S. (2021). Efficacy and landscape of Covid-19 vaccines: A review article. Revista da Associacao Medica Brasileira (1992), 67(3), 474-478.
Bache, B. E., Grobusch, M. P., & Agnandji, S. T. (2020). Safety, immunogenicity and risk-benefit analysis of rVSV-ΔG-ZEBOV-GP (V920) Ebola vaccine in phase I-III clinical trials across regions. Future Microbiology, 15, 85-106. https://doi.org/10.2217/fmb-2019-0237
Baden, L. R., El Sahly, H. M., Essink, B., Kotloff, K., Frey, S., Novak, R., Diemert, D., Spector, S. A., Nadine Rouphael, C., Creech, B., McGettigan, J., Khetan, S., Segall, N., Solis, J., Brosz, A., Fierro, C., Schwartz, H., Neuzil, K., Corey, L., … Zaks, T. (2021). Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. New England Journal of Medicine, 384, 403-416. https://doi.org/10.1056/NEJMoa2035389
Baradaran, H. R., Dehghanbanadaki, H., Moradpour, F., Eshrati, B., Moradi, G., Azami, M., Haji Ghadery, A., Mehrabi Nejad, M. M., & Moradi, Y. (2022). The effect of COVID-19 mRNA vaccines against postvaccination laboratory-confirmed SARS-CoV-2 infection, symptomatic COVID-19 infection, hospitalization, and mortality rate: A systematic review and meta-analysis. Expert Review of Vaccines, 21(10), 1455-1464. https://doi.org/10.1080/14760584.2022.2102001
Barbara, J., Bowman, R. V., Yang, I. A., & Fong, K. M. (2017). RE: Proportion of never-smoker non-small cell lung cancer patients at three diverse institutions. Journal of the National Cancer Institute., 110, 432. https://doi.org/10.1093/jnci/djx216
Barouch, D. H., Tomaka, F. L., Wegmann, F., Stieh, D. J., Alter, G., Robb, M. L., Michael, N. L., Peter, L., Nkolola, J. P., Borducchi, E. N., Chandrashekar, A., Jetton, D., Stephenson, K. E., Li, W., Korber, B., Tomaras, G. D., Montefiori, D. C., Gray, G., Frahm, N., … Schuitemaker, H. (2018). Evaluation of a mosaic HIV-1 vaccine in a multicentre, randomised, double-blind, placebo-controlled, phase 1/2a clinical trial (APPROACH) and in rhesus monkeys (NHP 13-19). Lancet (London, England), 392(10143), 232-243. https://doi.org/10.1016/S0140-6736(18)31364-3
Batteux, E., Mills, F., Jones, L. F., Symons, C., & Weston, D. (2022). The effectiveness of interventions for increasing COVID-19 vaccine uptake: A systematic review. Vaccine, 10(3), 386. https://doi.org/10.3390/vaccines10030386
Baxby, D. (1999). Edward Jenner's inquiry after 200 years. BMJ (Clinical Research Ed.), 318(7180), 390. https://doi.org/10.1136/bmj.318.7180.390
Berche, P. (2012). Louis Pasteur, from crystals of life to vaccination. Clinical Microbiology and Infection, 18(Suppl 5), 1-6. https://doi.org/10.1111/j.1469-0691.2012.03945.x
Biswas, M. R., Alzubaidi, M. S., Shah, U., Abd-Alrazaq, A. A., & Shah, Z. (2021). A scoping review to find out worldwide COVID-19 vaccine hesitancy and its underlying determinants. Vaccine, 9(11), 1243. https://doi.org/10.3390/vaccines9111243
Bolles, M., Deming, D., Long, K., Agnihothram, S., Whitmore, A., Ferris, M., Funkhouser, W., Gralinski, L., Totura, A., Heise, M., & Baric, R. S. (2011). A double-inactivated severe acute respiratory syndrome coronavirus vaccine provides incomplete protection in mice and induces increased eosinophilic proinflammatory pulmonary response upon challenge. Journal of Virology, 85(23), 12201-12215. https://doi.org/10.1128/JVI.06048-11
Bos, R., Rutten, L., van der Lubbe, J. E. M., Bakkers, M. J. G., Hardenberg, G., Wegmann, F., Zuijdgeest, D., de Wilde, A. H., Koornneef, A., Verwilligen, A., van Manen, D., Kwaks, T., Vogels, R., Dalebout, T. J., Myeni, S. K., Kikkert, M., Snijder, E. J., Li, Z., Barouch, D. H., … Schuitemaker, H. (2020). Ad26 vector-based COVID-19 vaccine encoding a prefusion-stabilized SARS-CoV-2 spike immunogen induces potent humoral and cellular immune responses. Npj Vaccines, 5, 91. https://doi.org/10.1038/s41541-020-00243-x
Bråve, A., Ljungberg, K., Wahren, B., & Liu, M. A. (2007). Vaccine delivery methods using viral vectors. Molecular Pharmaceutics, 4(1), 18-32.
Brito, L. A., Kommareddy, S., Maione, D., Uematsu, Y., Giovani, C., Berlanda Scorza, F., Otten, G. R., Yu, D., Mandl, C. W., Mason, P. W., Dormitzer, P. R., Ulmer, J. B., & Geall, A. J. (2015). Self-amplifying mRNA vaccines. Advances in Genetics, 89, 179-233. https://doi.org/10.1016/bs.adgen.2014.10.005
Calina, D., Docea, A. O., Petrakis, D., Egorov, A. M., Ishmukhametov, A. A., Gabibov, A. G., Shtilman, M. I., Kostoff, R., Carvalho, F., Vinceti, M., Spandidos, D. A., & Tsatsakis, A. (2020). Towards effective COVID-19 vaccines: Updates, perspectives and challenges. International Journal of Molecular Medicine, 46(1), 3-16. https://doi.org/10.3892/ijmm.2020.4596
Callaway, E. (2020). The race for coronavirus vaccines: A graphical guide. Nature, 580(7805), 576-577. https://doi.org/10.1038/d41586-020-01221-y
Centre for Disease Control (CDC). (2011). Vaccine history. http://www.cdc.gov/vaccinesafety/vaccine_monitoring/history.html
Centres for Disease Control and Prevention. (2020). Vaccines and Immunization: Vaccine testing and the approval process. https://www.cdc.gov/vaccines/basics/test-approve.html
Chan, B. T. B., Bobos, P., Odutayo, A., & Pai, M. (2021). Meta-analysis of risk of vaccine-induced immune thrombotic thrombocytopenia following ChAdOx1-S recombinant vaccine. BMJ Yale, 1-17. https://doi.org/10.1101/2021.05.04.21256613
Chappell, K. J., Mordant, F. L., Li, Z., Wijesundara, D. K., Ellenberg, P., Lackenby, J. A., Cheung, S. T. M., Modhiran, N., Avumegah, M. S., Henderson, C. L., Hoger, K., Griffin, P., Bennet, J., Hensen, L., Zhang, W., Nguyen, T. H. O., Marrero-Hernandez, S., Selva, K. J., Chung, A. W., … Munro, T. P. (2021). Safety and immunogenicity of an MF59-adjuvanted spike glycoprotein-clamp vaccine for SARS-CoV-2: A randomised, double-blind, placebo-controlled, phase 1 trial. The Lancet Infectious Diseases, 21(10), 1383-1394. https://doi.org/10.1016/S1473-3099(21)00200-0
Chavda, V. P., Chen, Y., Dave, J., Chen, Z. S., Chauhan, S. C., Yallapu, M. M., Uversky, V. N., Bezbaruah, R., Patel, S., & Apostolopoulos, V. (2022). COVID-19 and vaccination: Myths vs Science. Expert Review of Vaccines, 21(11), 1603-1620. https://doi.org/10.1080/14760584.2022.2114900
Choi, C. W., Moon, J. H., Kim, J. O., Yoo, S. H., Kim, H. G., Kim, J. H., Park, T. J., & Kim, S. S. (2018). Evaluation of potency on diphtheria and tetanus toxoid for adult vaccines by in vivo toxin neutralization assay using National Reference Standards. Osong Public Health and Research Perspectives, 9(5), 278-282. https://doi.org/10.24171/j.phrp.2018.9.5.10
Clem, A. S. (2011). Fundamentals of vaccine immunology. Journal of Global Infectious Diseases, 3(1), 73-78. https://doi.org/10.4103/0974-777X.77299
Conis, E. (2019). Measles and the modern history of vaccination. Public Health Reports (Washington, D.C:1974), 134(2), 118-125. https://doi.org/10.1177/0033354919826558
Corbett, K. S., Edwards, D. K., Leist, S. R., Abiona, O. M., Boyoglu-Barnum, S., Gillespie, R. A., Himansu, S., Schäfer, A., Ziwawo, C. T., DiPiazza, A. T., Dinnon, K. H., Elbashir, S. M., Shaw, C. A., Woods, A., Fritch, E. J., Martinez, D. R., Bock, K. W., Minai, M., Nagata, B. M., … Graham, B. S. (2020). SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness. Nature, 586(7830), 567-571. https://doi.org/10.1038/s41586-020-2622-0
Cunningham, A. L., Garçon, N., Leo, O., Friedland, L. R., Strugnell, R., Laupèze, B., Doherty, M., & Stern, P. (2016). Vaccine development: From concept to early clinical testing. Vaccine, 34(52), 6655-6664. https://doi.org/10.1016/j.vaccine.2016.10.016
Custers, J., Kim, D., Leyssen, M., Gurwith, M., Tomaka, F., Robertson, J., Heijnen, E., Condit, R., Shukarev, G., Heerwegh, D., van Heesbeen, R., Schuitemaker, H., Douoguih, M., Evans, E., Smith, E. R., Chen, R. T., & Brighton Collaboration Viral Vector Vaccines Safety Working Group (V3SWG). (2021). Vaccines based on replication incompetent Ad26 viral vectors: Standardized template with key considerations for a risk/benefit assessment. Vaccine, 39(22), 3081-3101. https://doi.org/10.1016/j.vaccine.2020.09.018
Czarny, M. J., Kass, N. E., Flexner, C., Carson, K. A., Myers, R. K., & Fuchs, E. J. (2010). Payment to healthy volunteers in clinical research: The research subject's perspective. Clinical Pharmacology and Therapeutics, 87(3), 286-293. https://doi.org/10.1038/clpt.2009.222
Davies, M. N., & Flower, D. R. (2007). Harnessing bioinformatics to discover new vaccines. Drug Discovery Today, 12, 389-395.
Day, C. J., Hartley-Tassell, L. E., Seib, K. L., Tiralongo, J., Bovin, N., Savino, S., Masignani, V., & Jennings, M. P. (2019). Lectin activity of Pseudomonas aeruginosa vaccine candidates PSE17-1, PSE41-5 and PSE54. Biochemical and Biophysical Research Communications, 513, 287-290. https://doi.org/10.1016/j.bbrc.2019.03.092
De Jong, S. E., Olin, A., & Pulendran, B. (2020). The impact of the microbiome on immunity to vaccination in humans. Cell Host & Microbe, 28(2), 169-179. https://doi.org/10.1016/j.chom.2020.06.014
Depelsenaire, A. C. I., Kendall, M. A. F., Young, P. R., & Muller, D. A. (2017). Introduction to vaccines and vaccination. In Micro- and Nanotechnology in Vaccine Development (pp. 47-62). William Andrew Publishing. https://doi.org/10.1016/B978-0-323-39981-4.00003-8
Di Pasquale, A., Bonanni, P., Garçon, N., Stanberry, L. R., El-Hodhod, M., & Tavares Da Silva, F. (2016). Vaccine safety evaluation: Practical aspects in assessing benefits and risks. Vaccine, 34(52), 6672-6680. https://doi.org/10.1016/j.vaccine.2016.10.039
Dicks, M. D., Spencer, A. J., Edwards, N. J., Wadell, G., Bojang, K., Gilbert, S. C., Hill, A. V., & Cottingham, M. G. (2012). A novel chimpanzee adenovirus vector with low human seroprevalence: Improved systems for vector derivation and comparative immunogenicity. PLoS One, 7(7), e40385. https://doi.org/10.1371/journal.pone.0040385
Dikhit, M. R., Kumar, A., Das, S., Dehury, B., Rout, A. K., Jamal, F., Sahoo, G. C., Topno, R. K., Pandey, K., Das, V. N. R., Bimal, S., & Das, P. (2017). Identification of potential MHC class-II-restricted epitopes derived from Leishmania donovani antigens by reverse vaccinology and evaluation of their CD4+ T-cell responsiveness against visceral Leishmaniasis. Frontiers in Immunology, 8, 1763. https://doi.org/10.3389/fimmu.2017.01763
Dong, Y., Dai, T., Wei, Y., Zhang, L., Zheng, M., & Zhou, F. (2020). A systematic review of SARS-CoV-2 vaccine candidates. Signal Transduction and Targeted Therapy, 5(1), 237. https://doi.org/10.1038/s41392-020-00352-y
Doroftei, B., Ciobica, A., Ilie, O. D., Maftei, R., & Ilea, C. (2021). Mini-review discussing the reliability and efficiency of COVID-19 vaccines. Diagnostics (Basel, Switzerland), 11(4), 579. https://doi.org/10.3390/diagnostics11040
Dubey, K. K., Luke, G. A., Knox, C., Kumar, P., Pletschke, B. I., Singh, P. K., & Shukla, P. (2018). Vaccine and antibody production in plants: Developments and computational tools. Briefings in Functional Genomics, 17, 295-307. https://doi.org/10.1093/bfgp/ely020
Dunn, D., Gilson, R., McCormack, S., & McCoy, L. (2022). Dose of approved COVID-19 vaccines is based on weak evidence: a review of early-phase, dose-finding trials: medRxiv. https://doi.org/10.1101/2022.09.20.22276701
Ehreth, J. (2003). The global value of vaccination. Vaccine, 21(7-8), 596-600. https://doi.org/10.1016/s0264-410x(02)00623-0
Ella, R., Vadrevu, K. M., Jogdand, H., Prasad, S., Reddy, S., Sarangi, V., Ganneru, B., Sapkal, G., Yadav, P., Abraham, P., Panda, S., Gupta, N., Reddy, P., Verma, S., Kumar Rai, S., Singh, C., Redkar, S. V., Gillurkar, C. S., Kushwaha, J. S., … Bhargava, B. (2021). Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBV152: A double-blind, randomised, phase 1 trial. The Lancet Infectious Diseases, 21(5), 637-646. https://doi.org/10.1016/S1473-3099(20)30942-7
Ellis, R. W. (1999). New technologies for making vaccines. Vaccine, 17, 1596-1604.
Enjuanes, L., Zuñiga, S., Castaño-Rodriguez, C., Gutierrez-Alvarez, J., Canton, J., & Sola, I. (2016). Molecular basis of coronavirus virulence and vaccine development. Advances in Virus Research, 96, 245-286.
Esmaeilzadeh, A., Maleki, A. J., Moradi, A., Siahmansouri, A., Yavari, M. J., Karami, P., & Elahi, R. (2022). Major severe acute respiratory coronavirus-2 (SARS-CoV-2) vaccine-associated adverse effects; benefits outweigh the risks. Expert Review of Vaccines, 21(10), 1377-1394. https://doi.org/10.1080/14760584.2022.2116008
European Medicines Agency, Committee for Medicinal Products for Human Use. (2005). Guideline on Clinical Evaluation of New Vaccines (EMEA/CHMP/VWP/164653/2005).
Excler, J. L., Saville, M., & Berkley, S. (2021). Vaccine development for emerging infectious diseases. Nature Medicine, 27, 591-600. https://doi.org/10.1038/s41591-021-01301-0
Farrington, C. P., & Miller, E. (2001). Vaccine trials. Molecular Biotechnology, 17(1), 43-58.
FDA. (2020a). Pfizer-BioNTech COVID-19 Vaccine EUA fact sheet for health care providers. Retrieved from https://www.fda.gov/media/144414/download
FDA. (2020b). Moderna COVID-19 Vaccine EUA fact sheet for Health care providers. Retrieved from https://www.fda.gov/media/144637/download
Fine, P. (2014). Science and society: Vaccines and public health. Public Health, 128(8), 686-692. https://doi.org/10.1016/j.puhe.2014.06.021
Forni, G., Mantovani, A., & COVID-19 Commission of Accademia Nazionale dei Lincei, Rome. (2021). COVID-19 vaccines: Where we stand and challenges ahead. Cell Death and Differentiation, 28(2), 626-639.
Forster, R. (2012). Study designs for the nonclinical safety testing of new vaccine products. Journal of Pharmacological and Toxicological Methods, 66(1), 1-7. https://doi.org/10.1016/j.vascn.2012.04.003
Francis, A. I., Ghany, S., Gilkes, T., & Umakanthan, S. (2022). Review of COVID-19 vaccine subtypes, efficacy and geographical distributions. Postgraduate Medical Journal, 98(1159), 389-394. https://doi.org/10.1136/postgradmedj-2021-140654
Fuenmayor, J., Gòdia, F., & Cervera, L. (2017). Production of virus-like particles for vaccines. New Biotechnology, 39, 174-180. https://doi.org/10.1016/j.nbt.2017.07.010
Fuller, D. H., & Berglund, P. (2020). Amplifying RNA vaccine development. The New England Journal of Medicine, 382(25), 2469-2471. https://doi.org/10.1056/NEJMcibr2009737
Gao, Q., Bao, L., Mao, H., Wang, L., Xu, K., Yang, M., Li, Y., Zhu, L., Wang, N., Lv, Z., Gao, H., Ge, X., Kan, B., Hu, Y., Liu, J., Cai, F., Jiang, D., Yin, Y., Qin, C., … Qin, C. (2020). Development of an inactivated vaccine candidate for SARS-CoV-2. Science (New York, N.Y.), 369(6499), 77-81. https://doi.org/10.1126/science.abc1932
García-Montero, C., Fraile-Martínez, O., Bravo, C., Torres-Carranza, D., Sanchez-Trujillo, L., Gómez-Lahoz, A. M., Guijarro, L. G., García-Honduvilla, N., Asúnsolo, A., Bujan, J., Monserrat, J., Serrano, E., Álvarez-Mon, M., De León-Luis, J. A., Álvarez-Mon, M. A., & Ortega, M. A. (2021). An updated review of SARS-CoV-2 vaccines and the importance of effective vaccination programs in pandemic times. Vaccine, 9(5), 433. https://doi.org/10.3390/vaccines9050433
Gavriatopoulou, M., Ntanasis-Stathopoulos, I., Korompoki, E., Fotiou, D., Migkou, M., Tzanninis, I. G., Psaltopoulou, T., Kastritis, E., Terpos, E., & Dimopoulos, M. A. (2021). Emerging treatment strategies for COVID-19 infection. Clinical and Experimental Medicine, 21(2), 167-179. https://doi.org/10.1007/s10238-020-00671-y
Ghiasi, N., Valizadeh, R., Arabsorkhi, M., Hoseyni, T. S., Esfandiari, K., Sadighpour, T., & Jahantigh, H. R. (2021). Efficacy and side effects of sputnik V, Sinopharm and AstraZeneca vaccines to stop COVID-19: A review and discussion. Immunopathologia Persa, 7(2), e31. https://doi.org/10.34172/ipp.2021.31
Goldenzweig, A., & Fleishman, S. J. (2018). Principles of protein stability and their application in computational design. Annual Review of Biochemistry, 87, 105-129. https://doi.org/10.1146/annurev-biochem-062917-012102
Graham, B. S., Gilman, M. S. A., & McLellan, J. S. (2019). Structure-based vaccine antigen design. Annual Review of Medicine, 70, 91-104. https://doi.org/10.1146/annurev-med-121217-094234
Graves, P. M., Deeks, J. J., Demicheli, V., & Jefferson, T. (2010). Vaccines for preventing cholera: Killed whole cell or other subunit vaccines (injected). The Cochrane Database of Systematic Reviews, 2010(8), CD000974.
Greene, J. M., Collins, F., Lefkowitz, E. J., Roos, D., Scheuermann, R. H., Sobral, B., Stevens, R., White, O., & Di Francesco, V. (2007). National Institute of Allergy and Infectious Diseases bioinformatics resource centers: New assets for pathogen informatics. Infection and Immunity, 75(7), 3212-3219. https://doi.org/10.1128/IAI.00105-07
Greenwood, B. (2014). The contribution of vaccination to global health: Past, present and future. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 369(1645), 20130433. https://doi.org/10.1098/rstb.2013.0433
Gregoriadis, G. (2023). Long circulating liposomes: evolution of the concept. In Targeting of drugs (Vol. 6, pp. 35-40). Life sciences. https://doi.org/10.1007/978-1-4899-0127-9_4
Haque, A., & Pant, A. B. (2020). Efforts at COVID-19 vaccine development: Challenges and successes. Vaccine, 8(4), 739. https://doi.org/10.3390/vaccines8040739
Harish, N., Gupta, R., Agarwal, P., Scaria, V., & Pillai, B. (2006). DyNAVacS: An integrative tool for optimized DNA vaccine design. Nucleic Acids Research, 34, W264-W266.
Hasan, M., Ghosh, P. P., Azim, K. F., Mukta, S., Abir, R. A., Nahar, J., & Hasan Khan, M. M. (2019). Reverse vaccinology approach to design a novel multi-epitope subunit vaccine against avian influenza A (H7N9) virus. Microbial Pathogenesis, 130, 19-37.
Hatcher, S. M., Endres-Dighe, S. M., Angulo, F. J., Srivastava, A., Nguyen, J. L., Khan, F., Martin, C., Swerdlow, D. L., McLaughlin, J. M., Ubaka-Blackmore, N., & Brown, L. M. (2022). COVID-19 vaccine effectiveness: A review of the first 6 months of COVID-19 vaccine availability (1 January-30 June 2021). Vaccine, 10(3), 393. https://doi.org/10.3390/vaccines10030393
Hayflick, L., & Moorhead, P. S. (1961). The serial cultivation of human diploid cell strains. Experimental Cell Research, 25, 585-621. https://doi.org/10.1016/0014-4827(61)90192-6
He, L., & Zhu, J. (2015). Computational tools for epitope vaccine design and evaluation. Current Opinion in Virology, 11, 103-112. https://doi.org/10.1016/j.coviro.2015.03.013
He, Y., Xiang, Z., & Mobley, H. L. (2010). Vaxign: The first web-based vaccine design program for reverse vaccinology and applications for vaccine development. Journal of Biomedicine & Biotechnology, 2010, 297505. https://doi.org/10.1155/2010/297505
Heinson, A. I., Woelk, C. H., & Newell, M. L. (2015). The promise of reverse vaccinology. International Health, 7, 85-89. https://doi.org/10.1093/inthealth/ihv002
Hilleman, M. R. (2000). Vaccines in historic evolution and perspective: A narrative of vaccine discoveries. Vaccine, 18(15), 1436-1447. https://doi.org/10.1016/s0264-410x(99)00434-x
Hyde, T. B., Dentz, H., Wang, S. A., Burchett, H. E., Mounier-Jack, S., Mantel, C. F., & Favin, M. (2016). The impact of new vaccine introduction on immunization and health systems: A review of the published literature. Retrieved January 27, 2023, from https://jhu.pure.elsevier.com/en/publications/the-impact-of-new-vaccine-introduction-on-immunization-and-health-4
IFPMA. (2019). The complex journey of a vaccine and Steps Behind Developing a New Vaccine. www.ifpma.org
Jackson, L. A., Anderson, E. J., Rouphael, N. G., Roberts, P. C., Makhene, M., Coler, R. N., McCullough, M. P., Chappell, J. D., Denison, M. R., Stevens, L. J., Pruijssers, A. J., McDermott, A., Flach, B., Doria-Rose, N. A., Corbett, K. S., Morabito, K. M., O'Dell, S., Schmidt, S. D., Swanson, P. A., II, … mRNA-1273 Study Group. (2020). An mRNA vaccine against SARS-CoV-2 - preliminary report. The New England Journal of Medicine, 383(20), 1920-1931. https://doi.org/10.1056/NEJMoa2022483
Jackwood, M. W., Hickle, L., Kapil, S., & Silva, R. (2008). Vaccine development using recombinant DNA technology. Council Agric Sci Technol.
Jones, I., & Roy, P. (2021). Sputnik V COVID-19 vaccine candidate appears safe and effective. Lancet (London, England), 397(10275), 642-643. https://doi.org/10.1016/S0140-6736(21)00191-4
Jung, S. Y., Kang, K. W., Lee, E. Y., Seo, D. W., Kim, H. L., Kim, H., Kwon, T., Park, H. L., Kim, H., Lee, S. M., & Nam, J. H. (2018). Heterologous prime-boost vaccination with adenoviral vector and protein nanoparticles induces both Th1 and Th2 responses against Middle East respiratory syndrome coronavirus. Vaccine, 36(24), 3468-3476. https://doi.org/10.1016/j.vaccine.2018.04.082
Karch, C. P., & Burkhard, P. (2016). Vaccine technologies: From whole organisms to rationally designed protein assemblies. Biochemical Pharmacology, 120, 1-14. https://doi.org/10.1016/j.bcp.2016.05.001
Karikó, K., Buckstein, M., Ni, H., & Weissman, D. (2005). Suppression of RNA recognition by toll-like receptors: The impact of nucleoside modification and the evolutionary origin of RNA. Immunity, 23(2), 165-175. https://doi.org/10.1016/j.immuni.2005.06.008
Karikó, K., Muramatsu, H., Welsh, F. A., Ludwig, J., Kato, H., Akira, S., & Weissman, D. (2008). Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Molecular Therapy, 16(11), 1833-1840. https://doi.org/10.1038/mt.2008.200
Kashte, S., Gulbake, A., El-Amin Iii, S. F., & Gupta, A. (2021). COVID-19 vaccines: Rapid development, implications, challenges and future prospects. Human Cell, 34(3), 711-733. https://doi.org/10.1007/s13577-021-00512-4
Kaushik, D. K., & Sehgal, D. (2008). Developing antibacterial vaccines in genomics and proteomics era. Scandinavian Journal of Immunology, 67, 544-552. https://doi.org/10.1111/j.1365-3083.2008.02107.x
Khalaj-Hedayati, A. (2020). Protective immunity against SARS subunit vaccine candidates based on spike protein: Lessons for coronavirus vaccine development. Journal of Immunology Research, 2020, 7201752. https://doi.org/10.1155/2020/7201752
Khandker, S. S., Godman, B., Jawad, M. I., Meghla, B. A., Tisha, T. A., Khondoker, M. U., Haq, M. A., Charan, J., Talukder, A. A., Azmuda, N., Sharmin, S., Jamiruddin, M. R., Haque, M., & Adnan, N. (2021). A systematic review on COVID-19 vaccine strategies, their effectiveness, and issues. Vaccine, 9(12), 1387. https://doi.org/10.3390/vaccines9121387
Khurana, A., Allawadhi, P., Khurana, I., Allwadhi, S., Weiskirchen, R., Banothu, A. K., Chhabra, D., Joshi, K., & Bharani, K. K. (2021). Role of nanotechnology behind the success of mRNA vaccines for COVID-19. Nano Today, 38, 101142. https://doi.org/10.1016/j.nantod.2021.101142
Khvorova, A., & Watts, J. K. (2017). The chemical evolution of oligonucleotide therapies of clinical utility. Nature Biotechnology, 35(3), 238-248. https://doi.org/10.1038/nbt.3765
King, N. P., Sheffler, W., Sawaya, M. R., Vollmar, B. S., Sumida, J. P., André, I., Gonen, T., Yeates, T. O., & Baker, D. (2012). Computational design of self-assembling protein nanomaterials with atomic level accuracy. Science (New York, N.Y.), 336(6085), 1171-1174. https://doi.org/10.1126/science.1219364
Knoll, M. D., & Wonodi, C. (2021). Oxford-AstraZeneca COVID-19 vaccine efficacy. Lancet (London, England), 397(10269), 72-74. https://doi.org/10.1016/S0140-6736(20)32623-4
Kohl, K. S., Magnus, M., Ball, R., Halsey, N., Shadomy, S., & Farley, T. A. (2008). Applicability, reliability, sensitivity, and specificity of six Brighton collaboration standardized case definitions for adverse events following immunization. Vaccine, 26(50), 6349-6360. https://doi.org/10.1016/j.vaccine.2008.09.002
Kostoff, R. N., Briggs, M. B., Porter, A. L., Spandidos, D. A., & Tsatsakis, A. (2020). COVID-19 vaccine safety. International Journal of Molecular Medicine, 46(5), 1599-1602. https://doi.org/10.3892/ijmm.2020.4733
Kreijtz, J. H., Osterhaus, A. D., & Rimmelzwaan, G. F. (2009). Vaccination strategies and vaccine formulations for epidemic and pandemic influenza control. Human Vaccines, 5(3), 126-135. https://doi.org/10.4161/hv.5.3.6986
Kwong, P. D., Chuang, G. Y., DeKosky, B. J., Gindin, T., Georgiev, I. S., Lemmin, T., Schramm, C. A., Sheng, Z., Soto, C., Yang, A. S., Mascola, J. R., & Shapiro, L. (2017). Antibodyomics: Bioinformatics technologies for understanding B-cell immunity to HIV-1. Immunological Reviews, 275(1), 108-128. https://doi.org/10.1111/imr.12480
Kyriakidis, N. C., López-Cortés, A., González, E. V., Grimaldos, A. B., & Prado, E. O. (2021). SARS-CoV-2 vaccines strategies: A comprehensive review of phase 3 candidates. Npj vaccines, 6, 28. https://www.nature.com/articles/s41541-021-00292-w
Lal, H., Cunningham, A. L., Godeaux, O., Chlibek, R., Diez-Domingo, J., Hwang, S. J., Levin, M. J., McElhaney, J. E., Poder, A., Puig-Barberà, J., Vesikari, T., Watanabe, D., Weckx, L., Zahaf, T., Heineman, T. C., & ZOE-50 Study Group. (2015). Efficacy of an adjuvanted herpes zoster subunit vaccine in older adults. The New England Journal of Medicine, 372(22), 2087-2096. https://doi.org/10.1056/NEJMoa1501184
Lapierre, P., & Gogarten, J. P. (2009). Estimating the size of the bacterial pan-genome. Trends in Genetics, 25(3), 107-110. https://doi.org/10.1016/j.tig.2008.12.004
Lattanzi, M., & Rappuoli, R. (2005). Novel Vaccination Strategies. The Grand Challenge for the Future, 2005, 77-98.
Leem, J., Georges, G., Shi, J., & Deane, C. M. (2018). Antibody side-chain conformations are position-dependent. Proteins, 86(4), 383-392. https://doi.org/10.1002/prot.25453
Leitner, W. W., Ying, H., & Restifo, N. P. (1999). DNA and RNA-based vaccines: Principles, progress and prospects. Vaccine, 18(9-10), 765-777. https://doi.org/10.1016/s0264-410x(99)00271-6
Leonardi, S., Giovanna, V., Praticò, A., Pecoraro, R., & La Rosa, M. (2011). A retrospective study on standard regimen for vaccination in celiac children. World Journal of Vaccine, 1(2), 29-32. https://doi.org/10.4236/wjv.2011.12006
Li, C., Deng, Y., Wang, S., Ma, F., Aliyari, R., Huang, X. Y., & Zhang, Q. (2020). Multicopy assembly of a hyperstable conjugate vaccine against human influenza viruses. Nature Communications, 11(1), 1-13.
Li, H., Yang, Y., Hong, W., Huang, M., Wu, M., & Zhao, X. (2020). Applications of genome editing technology in the targeted therapy of human diseases: Mechanisms, advances and prospects. Signal Transduction and Targeted Therapy, 5(1), 1. https://doi.org/10.1038/s41392-019-0089-y
Li, M. H., Zong, H., Leroueil, P. R., Choi, S. K., & Baker, J. R., Jr. (2017). Ligand characteristics important to avidity interactions of multivalent nanoparticles. Bioconjugate Chemistry, 28(6), 1649-1657. https://doi.org/10.1021/acs.bioconjchem.7b00098
Li, Y., Tenchov, R., Smoot, J., Liu, C., Watkins, S., & Zhou, Q. (2021). A comprehensive review of the global efforts on COVID-19 vaccine development. ACS Central Science, 7(4), 512-533.
Li, Y. D., Chi, W. Y., Su, J. H., Ferrall, L., Hung, C. F., & Wu, T. C. (2020). Coronavirus vaccine development: From SARS and MERS to COVID-19. Journal of Biomedical Science, 27(1), 104. https://doi.org/10.1186/s12929-020-00695-2
Limbu, Y. B., Gautam, R. K., & Pham, L. (2022). The health belief model applied to COVID-19 vaccine hesitancy: A systematic review. Vaccine, 10(6), 973. https://doi.org/10.3390/vaccines10060973
Lin, C., Tu, P., & Beitsch, L. M. (2020). Confidence and receptivity for COVID-19 vaccines: A rapid systematic review. Vaccine, 9(1), 16. https://doi.org/10.3390/vaccines9010016
Linsky, T. W., Vergara, R., Codina, N., Nelson, J. W., Walker, M. J., Su, W., Barnes, C. O., Hsiang, T. Y., Esser-Nobis, K., Yu, K., Reneer, Z. B., Hou, Y. J., Priya, T., Mitsumoto, M., Pong, A., Lau, U. Y., Mason, M. L., Chen, J., Chen, A., … Silva, D. A. (2020). De novo design of potent and resilient hACE2 decoys to neutralize SARS-CoV-2. Science (NewYork, N.Y.), 370(6521), 1208-1214. https://doi.org/10.1126/science.abe0075
Liu, M. A. (2010). Immunologic basis of vaccine vectors. Immunity, 33(4), 504-515. https://doi.org/10.1016/j.immuni.2010.10.004
Lu, S. (2009). Heterologous prime-boost vaccination. Current Opinion in Immunology, 21(3), 346-351. https://doi.org/10.1016/j.coi.2009.05.016
Madsen, T., Abbot, J. D., Preston, N. W., & Mackay, R. I. (1974). Editorial: Vaccination against whooping cough. British Medical Journal, 3(5930), 539-540. https://doi.org/10.1136/bmj.3.5930.539
Magistrelli, G., Poitevin, Y., Schlosser, F., Pontini, G., Malinge, P., Josserand, S., Corbier, M., & Fischer, N. (2017). Optimizing assembly and production of native bispecific antibodies by codon de-optimization. MAbs, 9(2), 231-239. https://doi.org/10.1080/19420862.2016.1267088
Mahase, E. (2021). COVID-19: US suspends Johnson and Johnson vaccine rollout over blood clots. BMJ (Clinical Research Ed.), 373, n970. https://doi.org/10.1136/bmj.n970
Maji, A., Misra, R., Kumar Mondal, A., Kumar, D., Bajaj, D., Singhal, A., Arora, G., Bhaduri, A., Sajid, A., Bhatia, S., Singh, S., Singh, H., Rao, V., Dash, D., Baby Shalini, E., Sarojini Michael, J., Chaudhary, A., Gokhale, R. S., & Singh, Y. (2015). Expression profiling of lymph nodes in tuberculosis patients reveal inflammatory milieu at site of infection. Scientific Reports, 5, 15214. https://doi.org/10.1038/srep15214
Majid, I., & Mearaj, S. (2021). Sweet syndrome after Oxford-AstraZeneca COVID-19 vaccine (AZD1222) in an elderly female. Dermatologic Therapy, 34(6), e15146. https://doi.org/10.1111/dth.15146
Malik, B., Kalantary, A., Rikabi, K., & Kunadi, A. (2021). Pulmonary embolism, transient ischaemic attack and thrombocytopenia after the Johnson & Johnson COVID-19 vaccine. BMJ Case Reports, 14(7), e243975. https://doi.org/10.1136/bcr-2021-243975
Marshall, V., & Baylor, N. W. (2011). Food and Drug Administration regulation and evaluation of vaccines. Pediatrics, 127(Suppl 1), S23-S30. https://doi.org/10.1542/peds.2010-1722E
Metz, B., van den Dobbelsteen, G., van Els, C., van der Gun, J., Levels, L., van der Pol, L., Rots, N., & Kersten, G. (2009). Quality-control issues and approaches in vaccine development. Expert Review of Vaccines, 8(2), 227-238. https://doi.org/10.1586/14760584.8.2.227
Mohsen, M. O., Augusto, G., & Bachmann, M. F. (2020). The 3Ds in virus-like particle based-vaccines: "Design, delivery and dynamics". Immunological Reviews, 296(1), 155-168. https://doi.org/10.1111/imr.12863
Moyle, P. M., & Toth, I. (2013). Modern subunit vaccines: Development, components, and research opportunities. ChemMedChem, 8(3), 360-376. https://doi.org/10.1002/cmdc.201200487
Mulligan, M. J., Lyke, K. E., Kitchin, N., Absalon, J., Gurtman, A., Lockhart, S., Neuzil, K., Raabe, V., Bailey, R., Swanson, K. A., Li, P., Koury, K., Kalina, W., Cooper, D., Fontes-Garfias, C., Shi, P. Y., Türeci, Ö., Tompkins, K. R., Walsh, E. E., … Jansen, K. U. (2020). Phase I/II study of COVID-19 RNA vaccine BNT162b1 in adults. Nature, 586(7830), 589-593. https://doi.org/10.1038/s41586-020-2639-4
Naz, K., Naz, A., Ashraf, S. T., Rizwan, M., Ahmad, J., Baumbach, J., & Ali, A. (2019). PanRV: Pangenome-reverse vaccinology approach for identifications of potential vaccine candidates in microbial pangenome. BMC Bioinformatics, 20, 123. https://doi.org/10.1186/s12859-019-2713-9
Nieto, K., & Salvetti, A. (2014). AAV vectors vaccines against infectious diseases. Frontiers in Immunology, 5, 5. https://doi.org/10.3389/fimmu.2014.00005
Niiranen, J., Kiviruusu, O., Vornanen, R., Saarenpää-Heikkilä, O., & Paavonen, E. J. (2021). High-dose electronic media use in five-year-olds and its association with their psychosocial symptoms: A cohort study. BMJ Open, 11(3), e040848. https://doi.org/10.1136/bmjopen-2020-040848
Ochieng, C., Anand, S., Mutwiri, G., Szafron, M., & Alphonsus, K. (2021). Factors associated with COVID-19 vaccine hesitancy among visible minority groups from a global context: A scoping review. Vaccine, 9(12), 1445. https://doi.org/10.3390/vaccines9121445
Ofek, G., Guenaga, F. J., Schief, W. R., Skinner, J., Baker, D., Wyatt, R., & Kwong, P. D. (2010). Elicitation of structure-specific antibodies by epitope scaffolds. Proceedings of the National Academy of Sciences of the United States of America, 107(42), 17880-17887. https://doi.org/10.1073/pnas.1004728107
Orozco, A., Morera, J., Jimenez, S., & Boza, R. (2013). A review of bioinformatics training applied to research in molecular medicine, agriculture and biodiversity in Costa Rica and Central America. Briefings in Bioinformatics, 14, 661-670. https://doi.org/10.1093/bib/bbt033
Østergaard, S. D., Schmidt, M., Horváth-Puhó, E., Thomsen, R. W., & Sørensen, H. T. (2021). Thromboembolism and the Oxford-AstraZeneca COVID-19 vaccine: Side-effect or coincidence? Lancet (London, England), 397(10283), 1441-1443. https://doi.org/10.1016/S0140-6736(21)00762-5
Pandey, A., Singh, N., Sambhara, S., & Mittal, S. K. (2010). Egg-independent vaccine strategies for highly pathogenic H5N1 influenza viruses. Human Vaccines, 6(2), 178-188. https://doi.org/10.4161/hv.6.2.9899
Pardi, N., Hogan, M. J., Porter, F. W., & Weissman, D. (2018). mRNA vaccines - a new era in vaccinology. Nature Reviews. Drug Discovery, 17(4), 261-279. https://doi.org/10.1038/nrd.2017.243
Pardi, N., Tuyishime, S., Muramatsu, H., Kariko, K., Mui, B. L., Tam, Y. K., Madden, T. D., Hope, M. J., & Weissman, D. (2015). Expression kinetics of nucleoside-modified mRNA delivered in lipid nanoparticles to mice by various routes. Journal of Controlled Release, 217, 345-351. https://doi.org/10.1016/j.jconrel.2015.08.007
Patwary, M. M., Alam, M. A., Bardhan, M., Disha, A. S., Haque, M. Z., Billah, S. M., Kabir, M. P., Browning, M. H. E. M., Rahman, M. M., Parsa, A. D., & Kabir, R. (2022). COVID-19 vaccine acceptance among low- and lower-middle-income countries: A rapid systematic review and meta-analysis. Vaccine, 10(3), 427. https://doi.org/10.3390/vaccines10030427
Plotkin, S. (2014). History of vaccination. Special Feature: Perspective., 111, 12283-12287. https://doi.org/10.1073/pnas.1400472111
Polack, F. P., Thomas, S. J., Kitchin, N., Absalon, J., Gurtman, A., Lockhart, S., Perez, J. L., Pérez Marc, G., Moreira, E. D., Zerbini, C., Bailey, R., Swanson, K. A., Roychoudhury, S., Koury, K., Li, P., Kalina, W. V., Cooper, D., Frenck, R. W., Jr., Hammitt, L. L., … C4591001 Clinical Trial Group. (2020). Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. The New England Journal of Medicine, 383(27), 2603-2615.
Polhaus, P. D., Urello, M. A., & Singh, R. (2021). A multivalent scaffold enhances the immunogenicity and stability of a SARS-CoV-2 spike protein mRNA vaccine. ACS Central Science, 7(4), 645-655.
Preiss, S., Garçon, N., Cunningham, A. L., Strugnell, R., & Friedland, L. R. (2016). Vaccine provision: Delivering sustained & widespread use. Vaccine, 34(52), 6665-6671. https://doi.org/10.1016/j.vaccine.2016.10.079
Premkumar, L., Segovia-Chumbez, B., Jadi, R., Martinez, D. R., Raut, R., Markmann, A., Cornaby, C., Bartelt, L., Weiss, S., Park, Y., Edwards, C. E., Weimer, E., Scherer, E. M., Rouphael, N., Edupuganti, S., Weiskopf, D., Tse, L. V., Hou, Y. J., Margolis, D., … de Silva, A. M. (2020). The receptor binding domain of the viral spike protein is an immunodominant and highly specific target of antibodies in SARS-CoV-2 patients. Science Immunology, 5(48), eabc8413. https://doi.org/10.1126/sciimmunol.abc8413
Prescott, M. J., & Lidster, K. (2017). Improving quality of science through better animal welfare: The NC3Rs strategy. Lab Animal, 46(4), 152-156. https://doi.org/10.1038/laban.1217
Przedpelski, A., Tepp, W. H., Pellett, S., Johnson, E. A., & Barbieri, J. T. (2020). A novel high-potency tetanus vaccine. mBio, 11(4), e01668-20. https://doi.org/10.1128/mBio.01668-20
Puigbo, P., Guzman, E., Romeu, A., & Garcia-Vallve, S. (2007). OPTIMIZER: A web server for optimizing the codon usage of DNA sequences. Nucleic Acids Research, 35, W126-W131. https://doi.org/10.1093/nar/gkm219
Pulendran, B., Arunachalam, P. S., & O'Hagan, D. T. (2021). Emerging concepts in the science of vaccine adjuvants. Nature Reviews. Drug Discovery, 20(6), 454-475. https://doi.org/10.1038/s41573-021-00163-y
Purcell, A. W., McCluskey, J., & Rossjohn, J. (2007). More than one reason to rethink the use of peptides in vaccine design. Nature Reviews. Drug Discovery, 6(5), 404-414. https://doi.org/10.1038/nrd2224
Ramasamy, M. N., Minassian, A. M., Ewer, K. J., Flaxman, A. L., Folegatti, P. M., Owens, D. R., Voysey, M., Aley, P. K., Angus, B., Babbage, G., Belij-Rammerstorfer, S., Berry, L., Bibi, S., Bittaye, M., Cathie, K., Chappell, H., Charlton, S., Cicconi, P., Clutterbuck, E. A., … Oxford COVID Vaccine Trial Group. (2021). Safety and immunogenicity of ChAdOx1 nCoV-19 vaccine administered in a prime-boost regimen in young and old adults (COV002): A single-blind, randomised, controlled, phase 2/3 trial. Lancet (London, England), 396(10267), 1979-1993.
Ramezanpour, B., Haan, I., Osterhaus, A., & Claassen, E. (2016). Vector-based genetically modified vaccines: Exploiting Jenner's legacy. Vaccine, 34(50), 6436-6448. https://doi.org/10.1016/j.vaccine.2016.06.059
Rao, G. S. N. K., Gowthami, B., Naveen, N. R., & Samudrala, P. K. (2021). An updated review on potential therapeutic drug candidates, vaccines and an insight on patents filed for COVID-19. Current Research in Pharmacology and Drug Discovery, 2, 100063. https://doi.org/10.1016/j.crphar.2021.100063
Rappuoli, R. (2000). Reverse vaccinology. Current Opinion in Microbiology, 3(5), 445-450. https://doi.org/10.1016/s1369-5274(00)00119-3
Rinaudo, C. D., Telford, J. L., Rappuoli, R., & Seib, K. L. (2009). Vaccinology in the genome era. The Journal of Clinical Investigation, 119(9), 2515-2525.
Robert-Guroff, M. (2007). Replicating and non-replicating viral vectors for vaccine development. Current Opinion in Biotechnology, 18(6), 546-556. https://doi.org/10.1016/j.copbio.2007.10.010
Rodrigues, C. M. C., & Plotkin, S. A. (2020). Impact of vaccines; health, economic and social perspectives. Frontiers in Microbiology, 11, 1526. https://doi.org/10.3389/fmicb.2020.01526
Rodriguez-Coira, J., & Sokolowska, M. (2021). SARS-CoV-2 candidate vaccines - composition, mechanisms of action and stages of clinical development. Allergy, 76(6), 1922-1924. https://doi.org/10.1111/all.14714
Roper, R. L., & Rehm, K. E. (2009). SARS vaccines: Where are we? Expert Review of Vaccines, 8(7), 887-898. https://doi.org/10.1586/erv.09.43
Roush, S. W., Murphy, T. V., & Vaccine-Preventable Disease Table Working Group. (2007). Historical comparisons of morbidity and mortality for vaccine-preventable diseases in the United States. JAMA, 298(18), 2155-2163.
Roy, D. N., Biswas, M., Islam, E., & Azam, M. S. (2022). Potential factors influencing COVID-19 vaccine acceptance and hesitancy: A systematic review. PLoS One, 17(3), e0265496. https://doi.org/10.1371/journal.pone.0265496
Sadoff, J., Le Gars, M., Shukarev, G., Heerwegh, D., Truyers, C., de Groot, A. M., Stoop, J., Tete, S., Van Damme, W., Leroux-Roels, I., Berghmans, P. J., Kimmel, M., Van Damme, P., de Hoon, J., Smith, W., Stephenson, K. E., De Rosa, S. C., Cohen, K. W., McElrath, M. J., … Schuitemaker, H. (2021). Interim results of a phase 1-2a trial of Ad26.COV2.S Covid-19 vaccine. The New England Journal of Medicine, 384(19), 1824-1835. https://doi.org/10.1056/NEJMoa2034201
Saha, R., Ghosh, P., & Burra, V. L. S. P. (2021). Designing a next generation multi-epitopebased peptide vaccine candidate against SARS-CoV-2 using computational approaches. 3 Biotech, 11(2), 47. https://doi.org/10.1007/s13205-020-02574-x
Sahin, U., Karikó, K., & Türeci, Ö. (2014). mRNA-based therapeutics-developing a new class of drugs. Nature Reviews. Drug Discovery, 13(10), 759-780. https://doi.org/10.1038/nrd4278
Sallam, M. (2021). COVID-19 vaccine hesitancy worldwide: A concise systematic review of vaccine acceptance rates. Vaccine, 9(2), 160. https://doi.org/10.3390/vaccines9020160
Sarkale, P., Patil, S., Yadav, P. D., Nyayanit, D. A., Sapkal, G., Baradkar, S., Lakra, R., Shete-Aich, A., Prasad, S., Basu, A., Dar, L., Vipat, V., Giri, S., Potdar, V., Choudhary, M. L., Praharaj, I., Jain, A., Malhotra, B., Gawande, P., … Abraham, P. (2020). First isolation of SARS-CoV-2 from clinical samples in India. The Indian Journal of Medical Research, 151(2 & 3), 244-250. https://doi.org/10.4103/ijmr.IJMR_1029_20
Scheepers, C. (2016). Host factors and broadly neutralizing antibodies in South African women infected with HIV-1 subtype C [Doctoral thesis].
Schlake, T., Thess, A., Fotin-Mleczek, M., & Kallen, K. J. (2012). Developing mRNA-vaccine technologies. RNA Biology, 9(11), 1319-1330. https://doi.org/10.4161/rna.22269
Schuchat, A. (2011). Human vaccines and their importance to public health. Procedia in Vaccinology, 5, 120-126.
Sette, A., & Rappuoli, R. (2010). Reverse vaccinology: Developing vaccines in the era of genomics. Immunity, 33(4), 530-541. https://doi.org/10.1016/j.immuni.2010.09.017
Shakeel, C. S., Mujeeb, A. A., Mirza, M. S., Chaudhry, B., & Khan, S. J. (2022). Global COVID-19 vaccine acceptance: A systematic review of associated social and behavioral factors. Vaccine, 10(1), 110. https://doi.org/10.3390/vaccines10010110
Sharifian-Dorche, M., Bahmanyar, M., Sharifian-Dorche, A., Mohammadi, P., Nomovi, M., & Mowla, A. (2021). Vaccine-induced immune thrombotic thrombocytopenia and cerebral venous sinus thrombosis post COVID-19 vaccination; a systematic review. Journal of the Neurological Sciences, 428, 117607. https://doi.org/10.1016/j.jns.2021.117607
Sharma, O., Sultan, A. A., Ding, H., & Triggle, C. R. (2020). A review of the Progress and challenges of developing a vaccine for COVID-19. Frontiers in Immunology, 11, 585354. https://doi.org/10.3389/fimmu.2020.585354
Shen, X., Korbe, B., & Montefiori, D. C. (2021). Susceptibility of circulating SARS-CoV-2 variants to Neutralizatio. The New England Journal of Medicine, 384, 2352-2354. https://doi.org/10.1056/NEJMc2103022
Sherman, R. M., & Salzberg, S. L. (2020). Pan-genomics in the human genome era. Nature Reviews Genetics, 21(4), 243-254. https://doi.org/10.1038/s41576-020-0210-7
Song, Y., DiMaio, F., Wang, R. Y. R., Kim, D., Miles, C., Brunette, T. J., Thompson, J., & Baker, D. (2013). High-resolution comparative modeling with RosettaCM. Structure, 21(10), 1735-1742.
Soria-Guerra, R. E., Nieto-Gomez, R., Govea-Alonso, D. O., & Rosales-Mendoza, S. (2015). An overview of bioinformatics tools for epitope prediction: Implications on vaccine development. Journal of Biomedical Informatics, 53, 405-414. https://doi.org/10.1016/j.jbi.2014.11.003
Souza, A. P. D., Haut, L., Reyes-Sandoval, A., & Pinto, A. R. (2005). Recombinant viruses as vaccines against viral diseases. Brazilian Journal of Medical and Biological Research, 38, 509-522. https://doi.org/10.1590/S0100-879X2005000400004
Stevens, M. P., Doll, M., Pryor, R., Godbout, E., Cooper, K., & Bearman, G. (2020). Impact of COVID-19 on traditional healthcare-associated infection prevention efforts. Infection Control and Hospital Epidemiology, 41, 946-947. https://doi.org/10.1017/ice.2020.141
Stranzl, T., Larsen, M. V., Lundegaard, C., & Nielsen, M. (2010). NetCTLpan: Pan-specific MHC class I pathway epitope predictions. Immunogenetics, 62(6), 357-368. https://doi.org/10.1007/s00251-010-0441-4
Strenkowska, M., Grzela, R., Majewski, M., Wnek, K., Kowalska, J., Lukaszewicz, M., Zuberek, J., Darzynkiewicz, E., Kuhn, A. N., Sahin, U., & Jemielity, J. (2016). Cap analogs modified with 1,2-dithiodiphosphate moiety protect mRNA from decapping and enhance its translational potential. Nucleic Acids Research, 44(20), 9578-9590. https://doi.org/10.1093/nar/gkw896
Strizova, Z., Smetanova, J., Bartunkova, J., & Milota, T. (2021). Principles and challenges in anti-COVID-19 vaccine development. International Archives of Allergy and Immunology, 182(4), 339-349. https://doi.org/10.1159/000514225
Strugnell, R., Zepp, F., Cunningham, A., & Tantawichien, T. (2011). Vaccine Antigens. Perspect Vaccinol, 1, 61-88. https://doi.org/10.1016/j.pervac.2011.05.003
Szabó, G. T., Mahiny, A. J., & Vlatkovic, I. (2022). COVID-19 mRNA vaccines: Platforms and current developments. Molecular Therapy, 30(5), 1850-1868. https://doi.org/10.1016/j.ymthe.2022.02.016
Tchorbanov, A. I., Dimitrov, J. D., & Vassilev, T. L. (2004). Optimization of casein-based semisynthetic medium for growing of toxigenic Corinebacterium diphtheriae in a fermenter. Canadian Journal of Microbiology, 50(10), 821-826. https://doi.org/10.1139/w04-061
Tregoning, J. S., Flight, K. E., Higham, S. L., Wang, Z., & Pierce, B. F. (2021). Progress of the COVID-19 vaccine effort: Viruses, vaccines and variants versus efficacy, effectiveness and escape. Nature Reviews. Immunology, 21(10), 626-636.
Tseng, C. T., Sbrana, E., Iwata-Yoshikawa, N., Newman, P. C., Garron, T., Atmar, R. L., Peters, C. J., & Couch, R. B. (2012). Immunization with SARS coronavirus vaccines leads to pulmonary immunopathology on challenge with the SARS virus. PLoS One, 7(4), e35421. https://doi.org/10.1371/journal.pone.0035421
Ullah, H., Hou, W., Dakshanamurthy, S., & Tang, Q. (2019). Host targeted antiviral (HTA): Functional inhibitor compounds of scaffold protein RACK1 inhibit herpes simplex virus proliferation. Oncotarget, 10(35), 3209-3226. https://doi.org/10.18632/oncotarget.26907
Ulmer, J. B., Valley, U., & Rappuoli, R. (2006). Vaccine manufacturing: Challenges and solutions. Nature Biotechnology, 24(11), 1377-1383. https://doi.org/10.1038/nbt1261
Ura, T., Okuda, K., & Shimada, M. (2014). Developments in viral vector-based vaccines. Vaccine, 2(3), 624-641. https://doi.org/10.3390/vaccines2030624
van Wezel, A. L., van Steenis, G., van der Marel, P., & Osterhaus, A. D. (1984). Inactivated poliovirus vaccine: Current production methods and new developments. Reviews of Infectious Diseases, 6(Suppl 2), S335-S340.
Vartak, A., & Sucheck, S. J. (2016). Recent advances in subunit vaccine carriers. Vaccine, 4(2), 12. https://doi.org/10.3390/vaccines4020012
Vashi, A. P., & Coiado, O. C. (2021). The future of COVID-19: A vaccine review. Journal of Infection and Public Health, 14(10), 1461-1465. https://doi.org/10.1016/j.jiph.2021.08.011
Vasilakos, J. P., & Tomai, M. A. (2013). The use of toll-like receptor 7/8 agonists as vaccine adjuvants. Expert Review of Vaccines, 12(7), 809-819. https://doi.org/10.1586/14760584.2013.811208
Verma, A. K., Kumar, A., Dhama, K., Deb, R., Rahal, A., & Chakraborty, S. (2012). Leptospirosis-persistence of a dilemma: An overview with particular emphasis on trends and recent advances in vaccines and vaccination strategies. Pakistan Journal of Biological Sciences, 15(20), 954-963.
Vita, R., Mahajan, S., Overton, J. A., Dhanda, S. K., Martini, S., Cantrell, J. R., Wheeler, D. K., Sette, A., & Peters, B. (2020). The immune epitope database (IEDB): 2020 update. Nucleic Acids Research, 48(D1), D1-D7.
Vivona, S., Gardy, J. L., Ramachandran, S., Brinkman, F. S., Raghava, G. P., Flower, D. R., & Filippini, F. (2008). Computer-aided biotechnology: From immuno-informatics to reverse vaccinology. Trends in Biotechnology, 26(4), 190-200. https://doi.org/10.1016/j.tibtech.2007.12.006
Voysey, M., Clemens, S. A. C., Madhi, S. A., Weckx, L. Y., Folegatti, P. M., Aley, P. K., Angus, B., Baillie, V. L., Barnabas, S. L., Bhorat, Q. E., Bibi, S., Briner, C., Cicconi, P., Collins, A. M., Colin-Jones, R., Cutland, C. L., Darton, T. C., Dheda, K., Duncan, C. J. A., … Oxford COVID Vaccine Trial Group. (2021). Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: An interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet (London, England), 397(10269), 99-111. https://doi.org/10.1016/S0140-6736(20)32661-1
Wadhwa, A., Aljabbari, A., Lokras, A., Foged, C., & Thakur, A. (2020). Opportunities and challenges in the delivery of mRNA-based vaccines. Pharmaceutics, 12(2), 102. https://doi.org/10.3390/pharmaceutics12020102
Walsh, E. E., Frenck, R. W., Jr., Falsey, A. R., Kitchin, N., Absalon, J., Gurtman, A., Lockhart, S., Neuzil, K., Mulligan, M. J., Bailey, R., Swanson, K. A., Li, P., Koury, K., Kalina, W., Cooper, D., Fontes-Garfias, C., Shi, P. Y., Türeci, Ö., Tompkins, K. R., … Gruber, W. C. (2020). Safety and immunogenicity of two RNA-based Covid-19 vaccine candidates. The New England Journal of Medicine, 383(25), 2439-2450. https://doi.org/10.1056/NEJMoa2027906
Wang, J. W., & Roden, R. B. (2013). Virus-like particles for the prevention of human papillomavirus-associated malignancies. Expert Review of Vaccines, 12(2), 129-141. https://doi.org/10.1586/erv.12.151
Wang, Y., Zhang, Z., Luo, J., Han, X., Wei, Y., & Wei, X. (2021). mRNA vaccine: A potential therapeutic strategy. Molecular Cancer, 20(1), 33. https://doi.org/10.1186/s12943-021-01311-z
Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., de Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R., & Schwede, T. (2018). SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Research, 46(W1), W296-W303. https://doi.org/10.1093/nar/gky427
Wesselink, A. K., Hatch, E. E., Rothman, K. J., Wang, T. R., Willis, M. D., Yland, J., Crowe, H. M., Geller, R. J., Willis, S. K., Perkins, R. B., Regan, A. K., Levinson, J., Mikkelsen, E. M., & Wise, L. A. (2022). A prospective cohort study of COVID-19 vaccination, SARS-CoV-2 infection, and fertility. American Journal of Epidemiology, 191(8), 1383-1395. https://doi.org/10.1093/aje/kwac011
Whalen, R. G. (1996). DNA vaccines, cyberspace and self-help programs. Intervirology, 39(1-2), 120-125. https://doi.org/10.1159/000150483
Williams, J. A., Carnes, A. E., & Hodgson, C. P. (2009). Plasmid DNA vaccine vector design: Impact on efficacy, safety and upstream production. Biotechnology Advances, 27(4), 353-370. https://doi.org/10.1016/j.biotechadv.2009.02.003
Williams, K., Bastian, A. R., Feldman, R. A., Omoruyi, E., de Paepe, E., Hendriks, J., van Zeeburg, H., Godeaux, O., Langedijk, J. P. M., Schuitemaker, H., Sadoff, J., & Callendret, B. (2020). Phase 1 safety and immunogenicity study of a respiratory syncytial virus vaccine with an adenovirus 26 vector encoding Prefusion F (Ad26.RSV.preF) in adults aged ≥60 years. The Journal of Infectious Diseases, 222(6), 979-988. https://doi.org/10.1093/infdis/jiaa193
Wise, J. (2021). Covid-19: European countries suspend use of Oxford-AstraZeneca vaccine after reports of blood clot. https://doi.org/10.1136/bmj.n699
Wolf, M. E., Luz, B., Niehaus, L., Bhogal, P., Bäzner, H., & Henkes, H. (2021). Thrombocytopenia and intracranial venous sinus thrombosis after "COVID-19 vaccine AstraZeneca" exposure. Journal of Clinical Medicine, 10(8), 1599. https://doi.org/10.3390/jcm10081599
Wrapp, D., Wang, N., Corbett, K. S., Goldsmith, J. A., Hsieh, C. L., Abiona, O., Graham, B. S., & McLellan, J. S. (2020). Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science (New York, N.Y.), 367(6483), 1260-1263. https://doi.org/10.1126/science.abb2507
Wright, A. E., & Semple, D. (1897). Remarks on vaccination against typhoid fever. British Medical Journal, 1(1883), 256-259. https://doi.org/10.1136/bmj.1.1883.256
Xia, S., Zhang, Y., Wang, Y., Wang, H., Yang, Y., Gao, G. F., Tan, W., Wu, G., Xu, M., Lou, Z., Huang, W., Xu, W., Huang, B., Wang, H., Wang, W., Zhang, W., Li, N., Xie, Z., Ding, L., … Yang, X. (2021). Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBIBP-CorV: A randomised, double-blind, placebo-controlled, phase 1/2 trial. The Lancet Infectious Diseases, 21(1), 39-51. https://doi.org/10.1016/S1473-3099(20)30831-8
Xiang, Z., & He, Y. (2009). Vaxign: A web-based vaccine target design program for reverse vaccinology. Procedia in Vaccinology, 1, 23-29. https://doi.org/10.1016/j.provac.2009.07.005
Yan, Z. P., Yang, M., & Lai, C. L. (2021). COVID-19 vaccines: A review of the safety and efficacy of current clinical trials. Pharmaceuticals (Basel, Switzerland), 14(5), 406. https://doi.org/10.3390/ph14050406
Yang, S., Li, Y., Dai, L., Wang, J., He, P., Li, C., Fang, X., Wang, C., Zhao, X., Huang, E., Wu, C., Zhong, Z., Wang, F., Duan, X., Tian, S., Wu, L., Liu, Y., Luo, Y., Chen, Z., … Gao, G. F. (2021). Safety and immunogenicity of a recombinant tandem-repeat dimeric RBD-based protein subunit vaccine (ZF2001) against COVID-19 in adults: Two randomised, double-blind, placebo-controlled, phase 1 and 2 trials. The Lancet Infectious Diseases, 21(8), 1107-1119. https://doi.org/10.1016/S1473-3099(21)00127-4
Yang, Z., Bogdan, P., & Nazarian, S. (2021). An in-silico deep learning approach to multi-epitope vaccine design: A SARS-CoV-2 case study. Scientific Reports, 11, 3238. https://doi.org/10.1038/s41598-021-81749-9
Yap, C., Ali, A., Prabhakar, A., Prabhakar, A., Pal, A., Lim, Y. Y., & Kakodkar, P. (2021). Comprehensive literature review on COVID-19 vaccines and role of SARS-CoV-2 variants in the pandemic. Therapeutic Advances in Vaccines and Immunotherapy, 9, 25151355211059791. https://doi.org/10.1177/25151355211059791
Yee, P. T. I., Tan, S. H., Ong, K. C., Tan, K. O., Wong, K. T., Hassan, S. S., & Poh, C. L. (2019). Development of live attenuated enterovirus 71 vaccine strains that confer protection against lethal challenge in mice. Scientific Reports, 9, 4805. https://doi.org/10.1038/s41598-019-41285-z
Young, J., Mercieca, L., Ceci, M., Pisani, D., Betts, A., & Boffa, M. J. (2022). A case of bullous pemphigoid after the SARS-CoV-2 mRNA vaccine. Journal of the European Academy of Dermatology and Venereology, 36(1), e13-e16. https://doi.org/10.1111/jdv.17676
Yu, J., Tostanoski, L. H., Peter, L., Mercado, N. B., McMahan, K., Mahrokhian, S. H., Nkolola, J. P., Liu, J., Li, Z., Chandrashekar, A., Martinez, D. R., Loos, C., Atyeo, C., Fischinger, S., Burke, J. S., Slein, M. D., Chen, Y., Zuiani, A., Lelis, F. J. N., … Barouch, D. H. (2020). DNA vaccine protection against SARS-CoV-2 in rhesus macaques. Science (New York, N.Y.), 369(6505), 806-811. https://doi.org/10.1126/science.abc6284
Zhang, C., Maruggi, G., Shan, H., & Li, J. (2019). Advances in mRNA vaccines for infectious diseases. Frontiers in Immunology, 10, 594. https://doi.org/10.3389/fimmu.2019.00594
Zhang, Y., Zeng, G., Pan, H., Li, C., Hu, Y., Chu, K., Han, W., Chen, Z., Tang, R., Yin, W., Chen, X., Hu, Y., Liu, X., Jiang, C., Li, J., Yang, M., Song, Y., Wang, X., Gao, Q., & Zhu, F. (2021). Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine in healthy adults aged 18-59 years: A randomised, double-blind, placebo-controlled, phase 1/2 clinical trial. The Lancet Infectious Diseases, 21(2), 181-192. https://doi.org/10.1016/S1473-3099(20)30843-4
Zhu, F. C., Guan, X. H., Li, Y. H., Huang, J. Y., Jiang, T., Hou, L. H., Li, J. X., Yang, B. F., Wang, L., Wang, W. J., Wu, S. P., Wang, Z., Wu, X. H., Xu, J. J., Zhang, Z., Jia, S. Y., Wang, B. S., Hu, Y., Liu, J. J., … Chen, W. (2020). Immunogenicity and safety of a recombinant adenovirus type-5-vectored COVID-19 vaccine in healthy adults aged 18 years or older: A randomised, double-blind, placebo-controlled, phase 2 trial. Lancet (London, England), 396(10249), 479-488. https://doi.org/10.1016/S0140-6736(20)31605-6
Zuckerman, A. J. (1985). Subunit, recombinant and synthetic hepatitis B vaccines. Scandinavian Journal of Gastroenterology, 117, 27-38. https://doi.org/10.3109/00365528509092225