Understanding cross-data dynamics of individual and social/environmental factors through a public health lens: explainable machine learning approaches.


Journal

Frontiers in public health
ISSN: 2296-2565
Titre abrégé: Front Public Health
Pays: Switzerland
ID NLM: 101616579

Informations de publication

Date de publication:
2023
Historique:
received: 16 08 2023
accepted: 09 10 2023
medline: 14 11 2023
pubmed: 13 11 2023
entrez: 13 11 2023
Statut: epublish

Résumé

The rising prevalence of obesity has become a public health concern, requiring efficient and comprehensive prevention strategies. This study innovatively investigated the combined influence of individual and social/environmental factors on obesity within the urban landscape of Seoul, by employing advanced machine learning approaches. We collected 'Community Health Surveys' and credit card usage data to represent individual factors. In parallel, we utilized 'Seoul Open Data' to encapsulate social/environmental factors contributing to obesity. A Random Forest model was used to predict obesity based on individual factors. The model was further subjected to Shapley Additive Explanations (SHAP) algorithms to determine each factor's relative importance in obesity prediction. For social/environmental factors, we used the Geographically Weighted Least Absolute Shrinkage and Selection Operator (GWLASSO) to calculate the regression coefficients. The Random Forest model predicted obesity with an accuracy of >90%. The SHAP revealed diverse influential individual obesity-related factors in each Gu district, although 'self-awareness of obesity', 'weight control experience', and 'high blood pressure experience' were among the top five influential factors across all Gu districts. The GWLASSO indicated variations in regression coefficients between social/environmental factors across different districts. Our findings provide valuable insights for designing targeted obesity prevention programs that integrate different individual and social/environmental factors within the context of urban design, even within the same city. This study enhances the efficient development and application of explainable machine learning in devising urban health strategies. We recommend that each autonomous district consider these differential influential factors in designing their budget plans to tackle obesity effectively.

Identifiants

pubmed: 37954048
doi: 10.3389/fpubh.2023.1257861
pmc: PMC10639162
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1257861

Informations de copyright

Copyright © 2023 Jeong, Yun, Park and Mun.

Déclaration de conflit d'intérêts

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Références

Int J Obes (Lond). 2008 Dec;32 Suppl 7:S93-7
pubmed: 19136998
JAMA. 2018 Jan 16;319(3):291-301
pubmed: 29340680
Appl Physiol Nutr Metab. 2012 Apr;37(2):345-69
pubmed: 22448608
PLoS One. 2019 Apr 22;14(4):e0215571
pubmed: 31009509
Environ Int. 2022 Jul;165:107319
pubmed: 35667344
Am J Health Promot. 2003 Sep-Oct;18(1):93-102
pubmed: 13677967
Am J Prev Med. 2015 Jul;49(1):72-9
pubmed: 25960394
PLoS Biol. 2019 Oct 18;17(10):e3000443
pubmed: 31626640
Environ Int. 2021 Oct;155:106700
pubmed: 34144474
Lancet Diabetes Endocrinol. 2021 Jun;9(6):373-392
pubmed: 34022156
Obes Rev. 2021 Feb;22 Suppl 1:e12995
pubmed: 32003149
Obesity (Silver Spring). 2011 Dec;19(12):2351-60
pubmed: 21527891
Obes Facts. 2018;11(3):263-276
pubmed: 29969778
Bull World Health Organ. 2004 Dec;82(12):940-6
pubmed: 15654409
Am J Clin Nutr. 2009 Oct;90(4):935-42
pubmed: 19692492
Lancet. 2010 Aug 21;376(9741):595-605
pubmed: 20673995
Prev Med. 1987 Mar;16(2):235-51
pubmed: 3588564
Arch Fam Med. 2000 Feb;9(2):160-7
pubmed: 10693734
Diabetes. 2005 Jul;54(7):2012-8
pubmed: 15983201
Metabolism. 2019 Mar;92:6-10
pubmed: 30253139
Circulation. 2020 Jul 7;142(1):4-6
pubmed: 32320270
Int J Environ Res Public Health. 2013 Oct 15;10(10):5083-96
pubmed: 24132135
N Engl J Med. 2016 Jan 14;374(2):177-9
pubmed: 26760089
Ann Intern Med. 2020 Nov 3;173(9):767-770
pubmed: 32598162
Am Psychol. 2020 Feb-Mar;75(2):163-177
pubmed: 32052992
Pharmacotherapy. 2013 Dec;33(12):1299-307
pubmed: 24019195
Curr Opin Nephrol Hypertens. 2006 Mar;15(2):173-8
pubmed: 16481885
Nutrients. 2020 May 28;12(6):
pubmed: 32481594
Prev Med Rep. 2021 Aug 28;24:101535
pubmed: 34987952
Nat Rev Dis Primers. 2017 Jun 15;3:17034
pubmed: 28617414
Nat Rev Endocrinol. 2019 Aug;15(8):456-478
pubmed: 31270440
Front Pediatr. 2021 Jan 12;8:581461
pubmed: 33511092
Br Med J. 1968 Feb 10;1(5588):352-4
pubmed: 15508204
JAMA. 2005 Jun 15;293(23):2873-83
pubmed: 15956632
Expert Opin Drug Saf. 2020 Sep;19(9):1095-1104
pubmed: 32750250
Endocrine. 2015 Sep;50(1):87-92
pubmed: 25754912
Nutr J. 2007 Oct 26;6:32
pubmed: 17963490
N Engl J Med. 2016 Jun 23;374(25):2430-40
pubmed: 27074389
Prev Med. 1999 Dec;29(6 Pt 1):563-70
pubmed: 10600438
Body Image. 2019 Jun;29:47-57
pubmed: 30831334
Am J Mens Health. 2022 Sep-Oct;16(5):15579883221123852
pubmed: 36305637
Obes Facts. 2009;2(5):282-5
pubmed: 20057194
Int J Obes Relat Metab Disord. 2002 Feb;26(2):262-73
pubmed: 11850760
N Engl J Med. 2012 Aug 23;367(8):695-704
pubmed: 22913680
N Engl J Med. 2017 Jan 19;376(3):254-266
pubmed: 28099824
Front Endocrinol (Lausanne). 2021 Sep 06;12:706978
pubmed: 34552557
Prog Cardiovasc Dis. 2018 Jul - Aug;61(2):246-252
pubmed: 29890171
Nat Rev Endocrinol. 2019 May;15(5):288-298
pubmed: 30814686
N Engl J Med. 2011 Nov 17;365(20):1876-85
pubmed: 22087679
Obesity (Silver Spring). 2020 Jun;28(6):1005
pubmed: 32237206
J Obes Metab Syndr. 2021 Jun 30;30(2):141-148
pubmed: 34158420
Prog Cardiovasc Dis. 2018 Jul - Aug;61(2):206-213
pubmed: 30003901
Med J Aust. 2012 Feb 20;196(3):174-7
pubmed: 22339522
Korean J Anesthesiol. 2019 Dec;72(6):558-569
pubmed: 31304696
Obes Rev. 2021 Feb;22 Suppl 1:e13037
pubmed: 32406192
J Am Diet Assoc. 2010 Oct;110(10):1456-60
pubmed: 20869483
JAMA. 1999 Jan 20;281(3):235-42
pubmed: 9918478
Science. 2020 Jul 31;369(6503):500-502
pubmed: 32732407
N Engl J Med. 2012 Apr 26;366(17):1567-76
pubmed: 22449319
Metabolism. 2019 Mar;92:163-169
pubmed: 30385379
Obes Res. 2000 Jan;8(1):49-61
pubmed: 10678259
Obes Rev. 2020 Nov;21(11):e13128
pubmed: 32845580
Clin Psychol Rev. 2012 Jul;32(5):383-99
pubmed: 22681912
Obes Rev. 2021 Feb;22 Suppl 1:e13098
pubmed: 32743975
Eur J Clin Nutr. 2011 Jun;65(6):711-9
pubmed: 21448220
Soc Sci Med. 2004 Dec;59(12):2421-34
pubmed: 15474198
Front Endocrinol (Lausanne). 2021 Jul 07;12:645563
pubmed: 34305810
Eur J Clin Nutr. 2000 Mar;54(3):247-52
pubmed: 10713748
Am J Physiol Heart Circ Physiol. 2020 Jun 1;318(6):H1441-H1446
pubmed: 32412779
Appl Clin Inform. 2015 Aug 12;6(3):506-20
pubmed: 26448795
Health Place. 2010 Mar;16(2):191-8
pubmed: 19879795
Lancet. 1998 Jul 18;352(9123):167-72
pubmed: 9683204
N Engl J Med. 2012 Apr 26;366(17):1577-85
pubmed: 22449317

Auteurs

Siwoo Jeong (S)

Convergence Institute of Human Data Technology, Jeonju University, Jeonju, Republic of Korea.
Department of Sports Rehabilitation Medicine, Kyungil University, Gyeongsan, Republic of Korea.

Sung Bum Yun (SB)

Urban Strategy Research Division, Seoul Institute of Technology, Seoul, Republic of Korea.

Soon Yong Park (SY)

Urban Strategy Research Division, Seoul Institute of Technology, Seoul, Republic of Korea.

Sungchul Mun (S)

Convergence Institute of Human Data Technology, Jeonju University, Jeonju, Republic of Korea.
Department of Industrial Engineering, Jeonju University, Jeonju, Republic of Korea.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH