Structural Isomers: Small Change with Big Difference in Anion Storage.
Anion storage
Isomers
P-type organic electrode materials
Solid-state molecular rearrangement
Zinc-organic batteries
Journal
Nano-micro letters
ISSN: 2150-5551
Titre abrégé: Nanomicro Lett
Pays: Germany
ID NLM: 101727940
Informations de publication
Date de publication:
13 Nov 2023
13 Nov 2023
Historique:
received:
19
08
2023
accepted:
05
10
2023
medline:
13
11
2023
pubmed:
13
11
2023
entrez:
13
11
2023
Statut:
epublish
Résumé
Organic electrode materials are promising for batteries. However, the reported organic electrodes are often facing the challenges of low specific capacity, low voltage, poor rate capability and vague charge storage mechanisms, etc. Isomers are good platform to investigate the charge storage mechanisms and enhance the performance of batteries, which, however, have not been focused in batteries. Herein, two isomers are reported for batteries. As a result, the isomer tetrathiafulvalene (TTF) could store two monovalent anions reversibly, deriving an average discharge voltage of 1.05 V and a specific capacity of 220 mAh g
Identifiants
pubmed: 37955747
doi: 10.1007/s40820-023-01239-7
pii: 10.1007/s40820-023-01239-7
pmc: PMC10643786
doi:
Types de publication
Journal Article
Langues
eng
Pagination
13Informations de copyright
© 2023. The Author(s).
Références
Nanomicro Lett. 2023 Jan 13;15(1):36
pubmed: 36637697
Acc Chem Res. 2020 Nov 17;53(11):2636-2647
pubmed: 32976710
Phys Rev B Condens Matter. 1996 Oct 15;54(16):11169-11186
pubmed: 9984901
J Am Chem Soc. 2017 Nov 1;139(43):15356-15362
pubmed: 29043799
Food Chem Toxicol. 2022 Jan 15;159 Suppl 1:112645
pubmed: 34736975
Chem Commun (Camb). 2022 Oct 25;58(85):11993-11996
pubmed: 36217964
ACS Appl Mater Interfaces. 2019 Dec 11;11(49):46070-46076
pubmed: 31711288
Phys Chem Chem Phys. 2005 Sep 21;7(18):3297-305
pubmed: 16240044
Nanomicro Lett. 2021 Oct 8;13(1):204
pubmed: 34625857
Phys Rev Lett. 1996 Oct 28;77(18):3865-3868
pubmed: 10062328
Chem Soc Rev. 2015 Feb 21;44(4):863-74
pubmed: 25256117
Nanomicro Lett. 2023 May 1;15(1):121
pubmed: 37127729
Angew Chem Int Ed Engl. 2023 Jul 3;62(27):e202302539
pubmed: 36988031
Angew Chem Int Ed Engl. 2001 Apr 17;40(8):1372-1409
pubmed: 11317287
Spectrochim Acta A Mol Biomol Spectrosc. 2020 Apr 15;231:117849
pubmed: 31839582
Adv Mater. 2022 Dec;34(52):e2200662
pubmed: 35364614
ACS Appl Mater Interfaces. 2020 Mar 4;12(9):10461-10470
pubmed: 32039576
J Am Chem Soc. 2023 Mar 8;145(9):5105-5113
pubmed: 36795482
Adv Mater. 2015 Apr 8;27(14):2348-54
pubmed: 25728939
J Mol Graph. 1996 Feb;14(1):33-8, 27-8
pubmed: 8744570
J Agric Food Chem. 2012 Nov 21;60(46):11625-30
pubmed: 23134416
Angew Chem Int Ed Engl. 2022 Jul 25;61(30):e202203453
pubmed: 35532543
J Chem Phys. 2010 Apr 21;132(15):154104
pubmed: 20423165
J Comput Chem. 2012 Feb 15;33(5):580-92
pubmed: 22162017
J Am Chem Soc. 2011 Aug 24;133(33):12918-21
pubmed: 21793486
Angew Chem Int Ed Engl. 2019 Jul 15;58(29):9902-9906
pubmed: 30950183
Chemistry. 2023 May 26;29(30):e202300539
pubmed: 36944075
Chem Commun (Camb). 2019 Sep 10;55(73):10856-10859
pubmed: 31441926
Phytother Res. 2018 Sep;32(9):1688-1706
pubmed: 29785774
Acta Crystallogr C. 2006 Aug;62(Pt 8):o501-4
pubmed: 16891732