Sertraline Pre-Treatment Attenuates Hemorrhagic Transformation Induced in Rats after Cerebral Ischemia Reperfusion via Down Regulation of Neuronal CD163: Involvement of M1/M2 Polarization Interchange and Inhibiting Autophagy.

Apoptosis Autophagy Cerebral I/R HO-2 Hemorrhagic transformation M2 phenotype MMP-9 Sertraline

Journal

Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology
ISSN: 1557-1904
Titre abrégé: J Neuroimmune Pharmacol
Pays: United States
ID NLM: 101256586

Informations de publication

Date de publication:
13 Nov 2023
Historique:
received: 01 07 2023
accepted: 17 10 2023
medline: 13 11 2023
pubmed: 13 11 2023
entrez: 13 11 2023
Statut: aheadofprint

Résumé

Cerebral ischemia reperfusion (I/R) is one of the neurovascular diseases which leads to severe brain deterioration. Haemorrhagic transformation (HT) is the main complication of ischemic stroke. It exacerbates by reperfusion, causing a more deleterious effect on the brain and death. The current study explored the protective effect of sertraline (Sert) against cerebral I/R in rats by inhibiting HT, together with the molecular pathways involved in this effect. Forty-eight wister male rats were divided into 4 groups: Sham, Sert + Sham, I/R, and Sert + I/R. The ischemic model was induced by bilateral occlusion of the common carotid artery for 20 min, then reperfusion for 24 h. Sertraline (20 mg/kg, p.o.) was administrated for 14 days before exposure to ischemia. Pre-treatment with Sert led to a significant attenuation of oxidative stress and inflammation. In addition, Sert attenuated phosphorylation of extracellular regulated kinases and nuclear factor kappa-p65 expression, consequently modulating microglial polarisation to M2 phenotype. Moreover, Sert prevented the hemorrhagic transformation of ischemic stroke as indicated by the notable decrease in neuronal expression of CD163, activity of Heme oxygenase-2 and matrix metalloproteinase-2 and 9 levels. In the same context, Sert decreased levels of autophagy and apoptotic markers. Furthermore, histological examination, Toluidine blue, and Prussian blue stain aligned with the results. In conclusion, Sert protected against cerebral I/R damage by attenuating oxidative stress, inflammation, autophagy, and apoptotic process. It is worth mentioning that our study was the first to show that Sert inhibited hemorrhagic transformation. The protective effect of sertraline against injury induced by cerebral ischemia reperfusion via inhibiting Hemorrhagic transformation.

Identifiants

pubmed: 37955765
doi: 10.1007/s11481-023-10093-8
pii: 10.1007/s11481-023-10093-8
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2023. The Author(s).

Références

Abbas H, Gad HA, Khattab MA, Mansour M (2021) The tragedy of Alzheimer’s disease: Towards better management via resveratrol-loaded oral bilosomes. Pharmaceutics 13:1635. https://doi.org/10.3390/pharmaceutics13101635
doi: 10.3390/pharmaceutics13101635 pubmed: 34683928 pmcid: 8538342
Atli O, Baysal M, Aydogan-Kilic G, Kilic V, Ucarcan S, Karaduman B, Ilgin S (2017) Sertraline-induced reproductive toxicity in male rats: Evaluation of possible underlying mechanisms. Asian J Androl 19(6):672–679. https://doi.org/10.4103/1008-682X.192637
doi: 10.4103/1008-682X.192637 pubmed: 27976631
Baharav E, Bar M, Taler M, Gil-Ad I, Karp L, Weinberger A, Weizman A (2012) Immunomodulatory effect of sertraline in a rat model of rheumatoid arthritis. NeuroImmunoModulation 19:309–318. https://doi.org/10.1159/000339109
doi: 10.1159/000339109 pubmed: 22797111
Bi R, Fang Z, You M, He Q, Hu B (2021) Microglia phenotype and intracerebral hemorrhage: A balance of yin and yang. Front Cell Neurosci 15. https://doi.org/10.3389/fncel.2021.765205
Chen S, Zhang S, Wu H, Zhang D, You G, You J, Zheng N (2022) Protective effect of phillyrin against cerebral ischemia/reperfusion injury in rats and oxidative stress-induced cell apoptosis and autophagy in neurons. Bioengineered 13(3):7940–7950. https://doi.org/10.1080/21655979.2022.2042142
doi: 10.1080/21655979.2022.2042142 pubmed: 35291908 pmcid: 9278963
Culling CFA (2013) Handbook of Histopathological and Histochemical Techniques. Ed. 3, Butterworths, London, UK
Dong R, Huang R, Wang J, Liu H, Xu Z (2021) Effects of microglial activation and polarization on brain injury after stroke. Front Neurol 1(12):620948. https://doi.org/10.3389/fneur.2021.620948 . PMID: 34276530; PMCID: PMC8280287
doi: 10.3389/fneur.2021.620948
Fernandez-Lizarbe S, Pascual M, Guerri C (2009) Critical role of TLR4 response in the activation of microglia by ethanol. J Immunol 183:4733–4744
doi: 10.4049/jimmunol.0803590 pubmed: 19752239
Gaire BP, Bae YJ, Choi JW (2019) S1P
doi: 10.4062/biomolther.2019.005 pubmed: 31181588
Garton T, Keep RF, Hua Y, Xi G (2017) CD163, a hemoglobin/haptoglobin scavenger receptor, after intracerebral hemorrhage: Functions in microglia/macrophages versus neurons. Transl Stroke Res 8:612–616. https://doi.org/10.1007/s12975-017-0535-5
doi: 10.1007/s12975-017-0535-5 pubmed: 28386733
Hernández IH, Villa-González M, Martín G, Soto M, Pérez-Álvarez MJ (2021) Glial cells as therapeutic approaches in brain ischemia-reperfusion injury. Cells 10(7):1639. https://doi.org/10.3390/cells10071639
doi: 10.3390/cells10071639 pubmed: 34208834 pmcid: 8305833
Hong JM, Kim DS, Kim M (2021) Hemorrhagic transformation after ischemic stroke: Mechanisms and management. Front Neurol 12:703258. https://doi.org/10.3389/fneur.2021.703258
doi: 10.3389/fneur.2021.703258 pubmed: 34917010 pmcid: 8669478
Jiang CT, Wu WF, Deng YH, Ge JW (2020) Modulators of microglia activation and polarisation in ischemic stroke (Review). Mol Med Rep 21(5):2006–2018. https://doi.org/10.3892/mmr.2020.11003 . Epub 2020 Feb 26. PMID: 32323760; PMCID: PMC7115206
doi: 10.3892/mmr.2020.11003 pubmed: 32323760 pmcid: 7115206
Jin Z, Guo P, Li X, Ke J, Wang Y, Wu H (2019) Neuroprotective effects of irisin against cerebral ischemia/ reperfusion injury via Notch signaling pathway. Biomed Pharmacother 120:109452. https://doi.org/10.1016/j.biopha.2019.109452
doi: 10.1016/j.biopha.2019.109452 pubmed: 31561067
Jurcau A, Simion A (2022) Neuroinflammation in cerebral ischemia and ischemia/reperfusion injuries: From pathophysiology to therapeutic strategies. Int J Mol Sci 23:14. https://doi.org/10.3390/ijms23010014
doi: 10.3390/ijms23010014
Lakhan SE, Kirchgessner A, Tepper D, Leonard A (2013) Matrix metalloproteinases and blood-brain barrier disruption in acute ischemic stroke. Front Neurol 4:32. https://doi.org/10.3389/fneur.2013.00032
doi: 10.3389/fneur.2013.00032 pubmed: 23565108 pmcid: 3615191
Leclerc JL, Lampert AS, Loyola Amador C, Schlakman B, Vasilopoulos T, Svendsen P, Moestrup SK, Doré S (2018) The absence of the CD163 receptor has distinct temporal influences on intracerebral hemorrhage outcomes. J Cereb Blood Flow Metab 38(2):262–273. https://doi.org/10.1177/0271678X17701459 . Epub 2017 Mar 30. PMID: 28358264; PMCID: PMC5951015
doi: 10.1177/0271678X17701459 pubmed: 28358264
Li H, Liu X, Zhu Y, Liu Y, Wang Y (2015) Magnolol derivative 002C–3 protects brain against ischemia-reperfusion injury via inhibiting apoptosis and autophagy. Neurosci Lett 588:178–183. https://doi.org/10.1016/j.neulet.2015.01.007
doi: 10.1016/j.neulet.2015.01.007 pubmed: 25575794
Liu R, Cao S, Hua Y, Keep RF, Huang Y, Xi G (2017) CD163 expression in neurons after experimental intracerebral hemorrhage. Stroke 48(5):1369–1375. https://doi.org/10.1161/STROKEAHA.117.016850
doi: 10.1161/STROKEAHA.117.016850 pubmed: 28360115 pmcid: 5404936
Lu Y, Xu X, Jiang T, Jin L, Zhao XD, Cheng JH, Jin XJ, Ma J, Piao HN, Piao LX (2019) Sertraline ameliorates inflammation in CUMS mice and inhibits TNF-α-induced inflammation in microglia cells. Inter Immunopharmacol 67:119–128. https://doi.org/10.1016/j.intimp.2018.12.011
doi: 10.1016/j.intimp.2018.12.011
Ma B, Day JP, Phillips H, Slootsky B, Tolosano E, Dorѐ S (2016) Deletion of the hemopexin or heme oxygenase-2 gene aggravates brain injury following stroma-free hemoglobin-induced intracerebral hemorrhage. J Neuroinflammation 13:26. https://doi.org/10.1186/s12974-016-0490-1
doi: 10.1186/s12974-016-0490-1 pubmed: 26831741 pmcid: 4736638
Mei Z, Du L, Liu X, Chen X, Tian H, Deng Y, Zhang W (2022) Diosmetin alleviated cerebral ischemia/reperfusion injury in vivo and in vitro by inhibiting oxidative stress via the SIRT1/Nrf2 signaling pathway. Food Funct 4;13(1):198–212. https://doi.org/10.1039/d1fo02579a
doi: 10.1039/d1fo02579a
Michalakeas CA, Parissis JT, Douzenis A, Nikolaou M, Varounis C, Andreadou I, Antonellos N, Markantonis-Kiroudis S, Paraskevaidis I, Ikonomidis I, Lykouras E, Kremastinos D (2011) Effects of sertraline on circulating markers of oxidative stress in depressed patients with chronic heart failure: A pilot study. J Card Fail 17(9):748–754. https://doi.org/10.1016/j.cardfail.2011.05.004
doi: 10.1016/j.cardfail.2011.05.004 pubmed: 21872145
Nie QQ, Zheng ZQ, Liao J, Li YC, Chen YT, Wang TY, Yuan GQ, Wang Z, Xue Q (2022) SPP1/AnxA1/TIMP1 as essential genes regulate the inflammatory response in the acute phase of cerebral ischemia-reperfusion in rats. J Inflamm Res 15:4873–4890. https://doi.org/10.2147/JIR.S369690
doi: 10.2147/JIR.S369690 pubmed: 36046663 pmcid: 9420928
Ozturk M, Ucar S, SarJ F, Erdogan S, Topdag M, Iseri M (2013) Possible protective effect of sertraline against cisplatin-induced ototoxicity: An experimental study. Sci World J Vol 2013. https://doi.org/10.1155/2013/523480
doi: 10.1155/2013/523480
Shao A, Gao A, Wu H, Xu W, Pan Y, Fang Y, Wang X, Zhang J (2021) Melatonin ameliorates hemorrhagic transformation via suppression of ROS-induced NLRP3 activation after cerebral ischemia in hyperglycemic rats. Oxid Med Cell Longev. https://doi.org/10.1155/2021/6659282
doi: 10.1155/2021/6659282 pubmed: 34987705 pmcid: 8720590
Shin TK, Kang MS, Lee HY, Seo MS, Kim SG, Kim CD, Lee WS (2009) Fluoxetine and sertraline attenuate postischemic brain injury in mice. Korean J Physiol Pharmacol 13(3):257–63. https://doi.org/10.4196/kjpp.2009.13.3.257
doi: 10.4196/kjpp.2009.13.3.257 pubmed: 19885045 pmcid: 2766739
Sitges M, Gómez CD, Aldana BI (2014) Sertraline reduces IL-1β and TNF-α mRNA expression and overcomes their rise induced by seizures in the rat hippocampus. PLoS One 9(11):e111665. https://doi.org/10.1371/journal.pone.0111665
doi: 10.1371/journal.pone.0111665 pubmed: 25364907 pmcid: 4218797
Spronk E, Sykes G, Falcione S, Munsterman D, Joy T, Kamtchum-Tatuene J, Jickling GC (2021) Hemorrhagic transformation in ischemic stroke and the role of inflammation. Front Neurol 12:661955. https://doi.org/10.3389/fneur.2021.661955
doi: 10.3389/fneur.2021.661955 pubmed: 34054705 pmcid: 8160112
Su F, Yi H, Xu L, Zhang Z (2015) Fluoxetine and S-citalopram inhibit M1 activation and promote M2 activation of microglia in vitro. Neuroscience 294:60–8. https://doi.org/10.1016/j.neuroscience.2015.02.028
doi: 10.1016/j.neuroscience.2015.02.028 pubmed: 25711936
Sun X, Wang D, Zhang T, Lu X, Duan F, Ju L, Zhuang X, Jiang X (2020) Eugenol attenuates cerebral ischemia-reperfusion injury by enhancing autophagy via AMPK-mTOR-P70S6K pathway. Front Pharmacol 11. https://doi.org/10.3389/fphar.2020.00084
Wanchao S, Chen M, Zhiguo S, Futang X, Mengmeng S (2018) Protective effect and mechanism of Lactobacillus on cerebral ischemia reperfusion injury in rats. Braz J Med Biol Res 51(7):e7172. https://doi.org/10.1590/1414-431x20187172
doi: 10.1590/1414-431x20187172 pubmed: 29791585 pmcid: 5972019
Wang J, Mao J, Wang R, Li S, Wu B, Yuan Y (2020) Kaempferol protects against cerebral ischemia reperfusion injury through intervening oxidative and inflammatory stress induced apoptosis. Front Pharmacol 11:424. https://doi.org/10.3389/fphar.2020.00424
doi: 10.3389/fphar.2020.00424 pubmed: 32351385 pmcid: 7174640
Wann BP, Bah TM, Kaloustian S, Boucher M, Dufort AM, Le Marec N, Godbout R, Rousseau G (2009) Behavioural signs of depression and apoptosis in the limbic system following myocardial infarction: Effects of sertraline. J Psychopharmacol 23(4):451–9. https://doi.org/10.1177/0269881108089820
doi: 10.1177/0269881108089820 pubmed: 18562428
Wei W, Min L, Xiao-Bing L, Ning L, Wei-Ke S, Alexandr VD, Jian-Qiang Y (2021) Neuroprotective effects of oxymatrine on PI3K/Akt/mTOR pathway after hypoxic-ischemic brain damage in neonatal rats. Front Pharmacol 12.  https://doi.org/10.3389/fphar.2021.642415
Wu F, Liu Z, Zhou L, Ye D, Zhu Y, Huang K, Weng Y, Xiong X, Zhan R, Shen J (2022) Systemic immune responses after ischemic stroke: From the center to the periphery. Front Immunol 13:911661. https://doi.org/10.3389/fimmu.2022.911661 . PMID: 36211352; PMCID: PMC9533176
doi: 10.3389/fimmu.2022.911661 pubmed: 36211352 pmcid: 9533176
Wu L, Xiong X, Wu X, Ye Y, Jian Z, Zhi Z, Gu L (2020) Targeting oxidative stress and inflammation to prevent ischemia-reperfusion injury. Front Mol Neurosci 5(13):28. https://doi.org/10.3389/fnmol.2020.00028
doi: 10.3389/fnmol.2020.00028
Wu R, Li X, Xu P, Huang L, Cheng J, Huang X, Jiang J, Wu LJ, Tang Y (2017) TREM2 protects against cerebral ischemia/reperfusion injury. Mol Brain 10:20. https://doi.org/10.1186/s13041-017-0296-9
doi: 10.1186/s13041-017-0296-9 pubmed: 28592261 pmcid: 5461720
Xu S, Lu J, Shao A, Zhang JH, Zhang J (2020) Glial cells: Role of the immune response in ischemic stroke. Front in Immunol 11:294. https://doi.org/10.3389/fimmu.2020.00294
doi: 10.3389/fimmu.2020.00294
Yan BC, Wang J, Rui Y, Cao J, Xu P, Jiang D, Zhu X, Won MH, Bo P, Su P (2019) Neuroprotective effects of gabapentin against cerebral ischemia reperfusion-induced neuronal autophagic injury via regulation of the PI3K/Akt/mTOR signaling pathways. J Neuropathol Exp Neurol 78(2):157–171. https://doi.org/10.1093/jnen/nly119
doi: 10.1093/jnen/nly119 pubmed: 30597043
Yang S, Wang H, Yang Y, Wang R, Wang Y, Wu C, Du G (2019) Baicalein administered in the subacute phase ameliorates ischemia-reperfusion-induced brain injury by reducing neuroinflammation and neuronal damage. Biomed Pharmacother 117:109102. https://doi.org/10.1016/j.biopha.2019.109102
doi: 10.1016/j.biopha.2019.109102 pubmed: 31228802
Yang Y, He B, Zhang X, Yang R, Xia X, Chen L, Li R, Shen Z, Chen P (2022) Geraniin protects against cerebral ischemia/reperfusion injury by suppressing oxidative stress and neuronal apoptosis via regulation of the Nrf2/HO-1 pathway. Oxid Med Cell Longev 2022:2152746. https://doi.org/10.1155/2022/2152746
doi: 10.1155/2022/2152746 pubmed: 35222793 pmcid: 8881129
Yu L, Su X, Li S, Zhao F, Mu D, Qu Y (2020) Microglia and their promising role in ischemic brain injuries: An update. Front Cell Neurosci 14:211. https://doi.org/10.3389/fncel.2020.00211
doi: 10.3389/fncel.2020.00211 pubmed: 32754016 pmcid: 7365911
Zhang H, Lu M, Zhang X, Kuai Y, Mei Y, Tan Q, Zhong K, Sun X, Ta W (2019) Isosteviol sodium protects against ischemic stroke by modulating microglia/macrophage polarization via disruption of GAS5/miR-146a-5psponge. Sci Rep 9:12221. https://doi.org/10.1038/s41598-019-48759-0
doi: 10.1038/s41598-019-48759-0 pubmed: 31434993 pmcid: 6704123
Zhang Y, Cao Y, Liu C (2020) Autophagy and ischemic stroke. Adv Exp Med Biol 1207:111–134. https://doi.org/10.1007/978-981-15-4272-5_7
doi: 10.1007/978-981-15-4272-5_7 pubmed: 32671742
Zhang P, Cui J (2022) Neuroprotective effect of fisetin against the cerebral ischemia-reperfusion damage via suppression of oxidative stress and inflammatory parameters. Inflammation 44:1490–1506. https://doi.org/10.1007/s10753-021-01434-x
doi: 10.1007/s10753-021-01434-x
Zhao SC, Ma LS, Chu ZH, Xu H, Wu WQ, Liu F (2017) Regulation of microglial activation in stroke. Acta Pharmacol Sin 38(4):445–458. https://doi.org/10.1038/aps.2016.162
doi: 10.1038/aps.2016.162 pubmed: 28260801 pmcid: 5386316
Zhao J, Piao X, Wu Y, Liang S, Han F, Liang Q, Shao S, Zhao D (2020) Cepharanthine attenuates cerebral ischemia/reperfusion injury by reducing NLRP3 inflammasome-induced inflammation and oxidative stress via inhibiting 12/15-LOX signaling. Biomed Pharmacother 127:110151. https://doi.org/10.1016/j.biopha.2020.110151
doi: 10.1016/j.biopha.2020.110151 pubmed: 32559840
Zhao T, Lu H, Li M, Yan Q, Gu J, Liu L (2022) Neuroprotective mechanism of crocin via PI3K/Akt/mTOR signaling pathway after cerebral infarction: an in vitro study. Am J Transl Res 15;14(5):3164–3171
Zhou J, Li M, Jin W-F, Li X-H, Zhang Y-Y (2018) Role of NF-κB on neurons after cerebral ischemia reperfusion. Int J Pharmacol 14:451–459. https://doi.org/10.3923/ijp.2018.451.459
doi: 10.3923/ijp.2018.451.459

Auteurs

Shimaa K Mohamed (SK)

Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo, 11795, Egypt. Shimaa_kamal@pharm.helwan.edu.eg.

Amany A E Ahmed (AAE)

Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo, 11795, Egypt.

Abeer Elkhoely (A)

Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo, 11795, Egypt.

Classifications MeSH