Skeletal Muscle's Role in Prenatal Inter-organ Communication: A Phenogenomic Study with Qualitative Citation Analysis.


Journal

Advances in anatomy, embryology, and cell biology
ISSN: 0301-5556
Titre abrégé: Adv Anat Embryol Cell Biol
Pays: Germany
ID NLM: 0407712

Informations de publication

Date de publication:
2023
Historique:
medline: 14 11 2023
pubmed: 13 11 2023
entrez: 13 11 2023
Statut: ppublish

Résumé

Gene targeting in mice allows for a complete elimination of skeletal (striated or voluntary) musculature in the body, from the beginning of its development, resulting in our ability to study the consequences of this ablation on other organs. Here I focus on the relationship between the muscle and lung, motor neurons, skeleton, and special senses. Since the inception of my independent laboratory, in 2000, with my team, we published more than 30 papers (and a book chapter), nearly 400 pages of data, on these specific relationships. Here I trace, using Web of Science, nearly 600 citations of this work, to understand its impact. The current report contains a summary of our work and its impact, NCBI's Gene Expression Omnibus accession numbers of all our microarray data, and three clear future directions doable by anyone using our publicly available data. Together, this effort furthers our understanding of inter-organ communication during prenatal development.

Identifiants

pubmed: 37955769
doi: 10.1007/978-3-031-38215-4_1
doi:

Substances chimiques

Vitamins 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1-19

Informations de copyright

© 2023. The Author(s), under exclusive license to Springer Nature Switzerland AG.

Références

Angka HE, Kablar B (2007) Differential responses to the application of exogenous NT-3 are observed for subpopulations of motor and sensory neurons depending on the presence of skeletal muscle. Dev Dyn 236:1193–1202
pubmed: 17436272 doi: 10.1002/dvdy.21147
Angka HE, Kablar B (2009) Role of skeletal muscle in the epigenetic shaping of motor neuron fate choices. Histol Histopathol 24:1579–1592
pubmed: 19795356
Angka HE, Geddes AJ, Kablar B (2008) Differential survival response of neurons to exogenous GDNF depends on the presence of skeletal muscle. Dev Dyn 237:3169–3178
pubmed: 18816441 doi: 10.1002/dvdy.21727
Baguma-Nibasheka M, Kablar B (2008) Pulmonary hypoplasia in the connective tissue growth factor (Ctgf) null mouse. Dev Dyn 237:485–493
pubmed: 18213577 doi: 10.1002/dvdy.21433
Baguma-Nibasheka M, Kablar B (2009a) Abnormal retinal development in the Btrc null mouse. Dev Dyn 238:2680–2687
pubmed: 19705444 pmcid: 5021536 doi: 10.1002/dvdy.22081
Baguma-Nibasheka M, Kablar B (2009b) Altered retinal cell differentiation in the AP-3 delta mutant (Mocha) mouse. Int J Dev Neurosci 27:701–708
pubmed: 19631730 doi: 10.1016/j.ijdevneu.2009.07.005
Baguma-Nibasheka M, Reddy T, Abbas-Butt A et al (2006) Fetal ocular movements and retinal cell differentiation: analysis employing DNA microarrays. Histol Histopathol 21:1331–1337
pubmed: 16977584
Baguma-Nibasheka M, Angka HE, Inanlou MR et al (2007) Microarray analysis of Myf5−/−:MyoD−/− hypoplastic mouse lungs reveals a profile of genes involved in pneumocyte differentiation. Histol Histopathol 22:483–495
pubmed: 17330803
Baguma-Nibasheka M, Gugic D, Saraga-Babic M et al (2012) Role of skeletal muscle in lung development. Histol Histopathol 27:817–826
Baguma-Nibasheka M, Fracassi A, Costain WJ et al (2016) Role of skeletal muscle in motor neuron development. Histol Histopathol 31:699–719
pubmed: 26892388
Baguma-Nibasheka M, Fracassi A, Costain WJ et al (2019) Striated-for-smooth muscle replacement in the developing mouse esophagus. Histol Histopathol 34:457–467
pubmed: 30698269
Barlow JP, Solomon TP (2018) Do skeletal muscle-secreted factors influence the function of pancreatic β-cells? Am J Physiol Endocrinol Metab 314:E297–E307
pubmed: 29208613 doi: 10.1152/ajpendo.00353.2017
Bytyqi AH, Lockridge O, Duysen E et al (2004) Impaired formation of the inner retina in an AChE knockout mouse results in degeneration of all photoreceptors. Eur J Neurosci 20:2953–2962
pubmed: 15579149 doi: 10.1111/j.1460-9568.2004.03753.x
Calle EA, Ghaedi M, Sundaram S et al (2014) Strategies for whole lung tissue engineering. IEEE Trans Biomed Eng 61:1482–1496
pubmed: 24691527 pmcid: 4126648 doi: 10.1109/TBME.2014.2314261
Chal J, Al Tanoury Z, Oginuma M et al (2018) Recapitulating early development of mouse musculoskeletal precursors of the paraxial mesoderm in vitro. Development. https://doi.org/10.1242/dev.157339
Chan CJ, Costanzo M, Ruiz-Herrero T et al (2019) Hydraulic control of mammalian embryo size and cell fate. Nature 571:112–116
pubmed: 31189957 doi: 10.1038/s41586-019-1309-x
Chen Q, Zhao Y, Qian Y et al (2019) A genetic-phenotypic classification for syndromic micrognathia. J Hum Genet 64:875–883
pubmed: 31273320 doi: 10.1038/s10038-019-0630-4
Chen T, Liu Z, Xue C et al (2020) Association of dysplastic coronoid process with long-face morphology. J Dent Res 99:339–348
pubmed: 31826728 doi: 10.1177/0022034519892551
Cheng CP, Liu YC, Tsai YL et al (2013) An efficient method for mining cross-timepoint gene regulation sequential patterns from time course gene expression datasets. BMC Bioinform. https://doi.org/10.1186/1471-2105-14-S12-S3
Cohen JC, Larson JE (2008) The Peter Pan paradigm. Theor Biol Med Model. https://doi.org/10.1186/1742-4682-5-1
Comai G, Sambasivan R, Gopalakrishnan S et al (2014) Variations in the efficiency of lineage marking and ablation confound distinctions between myogenic cell populations. Dev Cell 31:654–667
pubmed: 25490270 doi: 10.1016/j.devcel.2014.11.005
De Vries JIP, Fong BF (2007) Changes in fetal motility as a result of congenital disorders: an overview. Ultrasound Obstet Gynecol 29:590–599
pubmed: 17427894 doi: 10.1002/uog.3917
Dijkstra AE, Smolonska J, van den Berge M et al (2014) Susceptibility to chronic mucus hypersecretion, a genome wide association study. PLoS One. https://doi.org/10.1371/journal.pone.0091621
Edgar R, Domrachev M, Lash AE (2002) Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30:207–210
pubmed: 11752295 pmcid: 99122 doi: 10.1093/nar/30.1.207
Fauroux B, Lofaso F (2005) Non-invasive mechanical ventilation: when to start for what benefit? Thorax 60:979–980
pubmed: 16299111 pmcid: 1747262 doi: 10.1136/thx.2005.040394
Feingold-Zadok M, Chitayat D, Chong K et al (2017) Mutations in the NEB gene cause fetal akinesia/arthrogryposis multiplex congenital. Prenat Diagn 37:144–150
pubmed: 27933661 doi: 10.1002/pd.4977
Felsenthal N, Zelzer E (2017) Mechanical regulation of musculoskeletal system development. Development 144:4271–4283
pubmed: 29183940 pmcid: 6514418 doi: 10.1242/dev.151266
Filges I, Hall JG (2013) Failure to identify antenatal multiple congenital contractures and fetal akinesia--proposal of guidelines to improve diagnosis. Prenat Diagn 33:61–74
Geddes AJ, Angka HE, Davies KA et al (2006) Subpopulations of motor and sensory neurons respond differently to brain-derived neurotrophic factor depending on the presence of the skeletal muscle. Dev Dyn 235:2175–2184
pubmed: 16804896 doi: 10.1002/dvdy.20877
Gerhart J, Pfautz J, Neely C et al (2009) Noggin producing, MyoD-positive cells are crucial for eye development. Dev Biol 336:30–41
pubmed: 19778533 pmcid: 2783511 doi: 10.1016/j.ydbio.2009.09.022
Glatzel-Plucinska N, Piotrowska A, Grzegrzolka J et al (2018) SATB1 level correlates with Ki-67 expression and is a positive prognostic factor in non-small cell lung carcinoma. Anticancer Res 38:723–736
pubmed: 29374696
Gomez C, David V, Peet NM et al (2007) Absence of mechanical loading in utero influences bone mass and architecture but not innervation in Myod-Myf5-deficient mice. J Anat 210:259–271
pubmed: 17331176 pmcid: 2100282 doi: 10.1111/j.1469-7580.2007.00698.x
Hall-Glenn F, Lyons KM (2011) Roles for CCN2 in normal physiological processes. Cell Mol Life Sci 68:3209–3217
pubmed: 21858450 pmcid: 3670951 doi: 10.1007/s00018-011-0782-7
Hernandez-Hernandez JM, Garcia-Gonzalez EG, Brun CE et al (2017) The myogenic regulatory factors, determinants of muscle development, cell identity and regeneration. Semin Cell Dev Biol 72:10–18
pubmed: 29127045 pmcid: 5723221 doi: 10.1016/j.semcdb.2017.11.010
Hill DP, Berardini TZ, Howe DG et al (2010) Representing ontogeny through ontology: a developmental biologist’s guide to the gene ontology. Mol Reprod Dev 77:314–329
pubmed: 19921742 pmcid: 2830379 doi: 10.1002/mrd.21130
Holbourn KP, Acharya KR, Perbal B (2008) The CCN family of proteins: structure-function relationships. Trends Biochem Sci 33:461–473
pubmed: 18789696 pmcid: 2683937 doi: 10.1016/j.tibs.2008.07.006
Hollo G (2017) Demystification of animal symmetry: symmetry is a response to mechanical forces. Biol Direct. https://doi.org/10.1186/s13062-017-0182-5
Hong P, Rot I, Kablar B (2015) The role of skeletal muscle in external ear development: a mouse model histomorphometric study. Plast Reconstr Surg Glob Open. https://doi.org/10.1097/GOX.0000000000000352
Iizuka K, Machida T, Hirafuji M (2014) Skeletal muscle is an endocrine organ. J Pharmacol Sci 125:125–131
pubmed: 24859778 doi: 10.1254/jphs.14R02CP
Inanlou MR, Kablar B (2003) Abnormal development of the diaphragm in mdx:MyoD−/− 9th embryos leads to pulmonary hypoplasia. Int J Dev Biol 47:363–371
pubmed: 12895031
Inanlou MR, Kablar B (2005) Contractile activity of skeletal musculature involved in breathing is essential for normal lung cell differentiation, as revealed in Myf5−/−:MyoD−/− embryos. Dev Dyn 233:772–782
pubmed: 15844178 doi: 10.1002/dvdy.20381
Inanlou MR, Baguma-Nibasheka M, Kablar B (2005) The role of fetal breathing-like movements in lung organogenesis. Histol Histopathol 20:1261–1266
pubmed: 16136506
Jun JI, Lau LF (2011) Taking aim at the extracellular matrix: CCN proteins as emerging therapeutic targets. Nat Rev Drug Discov 10:945–963
pubmed: 22129992 pmcid: 3663145 doi: 10.1038/nrd3599
Kablar B (2003) Determination of retinal cell fates is affected in the absence of extraocular striated muscles. Dev Dyn 226:478–490
pubmed: 12619134 doi: 10.1002/dvdy.10256
Kablar B (2011) Role of skeletal musculature in the epigenetic shaping of organs, tissues and cell fate choices. In: Hallgrimsson B, Hall BK (eds) Epigenetics, linking genotype and phenotype in development and evolution, 1st edn. University of California Press, Berkely, LA, pp 256–268
Kablar B, Belliveau AC (2005) Presence of neurotrophic factors in skeletal muscle correlates with survival of spinal cord motor neurons. Dev Dyn 234:659–669
pubmed: 16193506 doi: 10.1002/dvdy.20589
Kablar B, Rudnicki MA (1999) Development in the absence of skeletal muscle results in the sequential ablation of motor neurons from the spinal cord to the brain. Dev Biol 208:93–109
pubmed: 10075844 doi: 10.1006/dbio.1998.9184
Karsenty G, Olson EN (2016) Bone and muscle endocrine functions: unexpected paradigms of inter-organ communication. Cell 164:1248–1256
pubmed: 26967290 pmcid: 4797632 doi: 10.1016/j.cell.2016.02.043
Karstoft K, Pedersen BK (2016) Skeletal muscle as a gene regulatory endocrine organ. Curr Opin Clin Nutr Metab Care 19:270–275
pubmed: 27101470 doi: 10.1097/MCO.0000000000000283
Kassar-Duchossoy L, Gayraud-Morel B, Gomes D et al (2004) Mrf4 determines skeletal muscle identity in Myf5:MyoD double-mutant mice. Nature 431:466–471
pubmed: 15386014 doi: 10.1038/nature02876
Kato S, Yokoyama S, Hayakawa Y et al (2016) P38 pathway as a key downstream signal of connective tissue growth factor to regulate metastatic potential in non-small-cell lung cancer. Cancer Sci 107:1416–1421
pubmed: 27403934 pmcid: 5084657 doi: 10.1111/cas.13009
Knausgaard KO (2012) My struggle. Random House, London
Kouskoura T, El Fersioui Y, Angelini M et al (2016) Dislocated tongue muscle attachment connected to cleft palate formation. J Dent Res 95:453–459
pubmed: 26701347 doi: 10.1177/0022034515621869
Kozhemyakina E, Lassar AB, Zelzer E (2015) A pathway to bone: signaling molecules and transcription factors involved in chondrocyte development and maturation. Development 142:817–831
pubmed: 25715393 pmcid: 4352987 doi: 10.1242/dev.105536
Kuznetsov MS, Rezvyakov PN, Lisyukov AN et al (2019a) Bioinformatic analysis of the sciatic nerve transcriptomes of mice after 30-Day spaceflight on board the Bion-M1 biosatellite. Russ J Genet 55:388–392
doi: 10.1134/S1022795419030104
Kuznetsov MS, Lisukov AN, Rizvanov AA et al (2019b) Bioinformatic study of transcriptome changes in the mice lumbar spinal cord after the 30-day spaceflight and subsequent 7-day readaptation on earth: new insights into molecular mechanisms of the hypogravity motor syndrome. Front Pharmacol. https://doi.org/10.3389/fphar.2019.00747
Lecuit T, Mahadevan L (2017) Morphogenesis one century after On Growth and Form. Development 144:4197–4198
pubmed: 29183932 doi: 10.1242/dev.161125
Li J, Ye L, Owen S et al (2015) Emerging role of CCN family proteins in tumorigenesis and cancer metastasis. Int J Mol Med 36:1451–1463
pubmed: 26498181 pmcid: 4678164 doi: 10.3892/ijmm.2015.2390
Li J, Wang Z, Chu Q et al (2018) The strength of mechanical forces determines the differentiation of alveolar epithelial cells. Dev Cell 44:297–312
pubmed: 29408236 doi: 10.1016/j.devcel.2018.01.008
Longo G, Montevil M, Sonnenschein C et al (2015) In search of principles for a theory of organisms. J Biosci. https://doi.org/10.1007/s12038-015-9574-9
Mammoto T, Ingber DE (2010) Mechanical control of tissue and organ development. Development 137:1407–1420
pubmed: 20388652 pmcid: 2853843 doi: 10.1242/dev.024166
Mammoto T, Mammoto A, Ingber DE (2013) Mechanobiology and developmental control. Annu Rev Cell Dev Biol 29:27–61
pubmed: 24099083 doi: 10.1146/annurev-cellbio-101512-122340
Maurel DB, Jahn K, Lara-Castillo N (2017) Muscle-bone crosstalk: emerging opportunities for novel therapeutic approaches to treat musculoskeletal pathologies. Biomedicine. https://doi.org/10.3390/biomedicines5040062
Mescher AL (2016) Junqueira’s Basic Histology Text and Atlas. McGraw Hill Education, New York
Moreno E, Rhiner C (2014) Darwin's multicellularity: from neurotrophic theories and cell competition to fitness fingerprints. Curr Opin Cell Biol 31:16–22
pubmed: 25022356 pmcid: 4238900 doi: 10.1016/j.ceb.2014.06.011
Moss ML (1997) The functional matrix hypothesis revisited. 1. The role of mechanotransduction. Am J Orthod Dentofac Orthop 112:8–11
doi: 10.1016/S0889-5406(97)70267-1
Mukhopadhyay P, Seelan RS, Rezzoug F et al (2017) Determinants of orofacial clefting I: effects of 5-aza-2′-deoxycytidine on cellular processes and gene expression during development of the first branchial arch. Reprod Toxicol 67:85–99
pubmed: 27915011 doi: 10.1016/j.reprotox.2016.11.016
Müller GB, Newman SA (2003) Origination of organismal form: beyond the gene in developmental and evolutionary biology. MIT Press, Cambridge
doi: 10.7551/mitpress/5182.001.0001
Nayak MS, Kim YS, Goldman M et al (2006) Cellular therapies in motor neuron diseases. Biochim Biophys Acta 1762:1128–1138
pubmed: 16872810 doi: 10.1016/j.bbadis.2006.06.004
Nelson CM, Gleghorn JP, Pang MF et al (2017) Microfluidic chest cavities reveal that transmural pressure controls the rate of lung development. Development 144:4328–4335
pubmed: 29084801 pmcid: 5769635
Noden DM, Francis-West P (2006) The differentiation and morphogenesis of craniofacial muscles. Dev Dyn 235:1194–1218
pubmed: 16502415 doi: 10.1002/dvdy.20697
Nowlan NC (2015) Biomechanics of foetal movement. Eur Cell Mater 29:1–21
pubmed: 25552425 doi: 10.22203/eCM.v029a01
Nowlan NC, Dumas G, Tajbakhsh S et al (2012) Biophysical stimuli induced by passive movements compensate for lack of skeletal muscle during embryonic skeletogenesis. Biomech Model Mechanobiol 11:207–219
pubmed: 21505895 doi: 10.1007/s10237-011-0304-4
Ornitz DM, Yin Y (2012) Signaling networks regulating development of the lower respiratory tract. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a008318
Petersen TH, Calle EA, Niklason LE (2011) Strategies for lung regeneration. Mater Today 14:196–201
doi: 10.1016/S1369-7021(11)70114-6
Petersen TH, Calle EA, Colehour MB et al (2012) Matrix composition and mechanics of decellularized lung scaffolds. Cells Tissues Organs 195:222–231
pubmed: 21502745 doi: 10.1159/000324896
Piccolo S (2013) Developmental biology: Mechanics in the embryo. Nature 504:223–225
pubmed: 24336279 doi: 10.1038/504223a
Pollard AS, Boyd S, McGonnell IM et al (2017) The role of embryo movement in the development of the furcula. J Anat 230:435–443
pubmed: 27921302 doi: 10.1111/joa.12571
Rolfe R, Roddy K, Murphy P (2013) Mechanical regulation of skeletal development. Curr Osteoporos Rep 11:107–116
pubmed: 23467901 doi: 10.1007/s11914-013-0137-4
Rot I, Kablar B (2010) The influence of acoustic and static stimuli on development of inner ear sensory epithelia. Int J Dev Neurosci 28:309–315
pubmed: 20188812 doi: 10.1016/j.ijdevneu.2010.02.008
Rot I, Kablar B (2013) Role of skeletal muscle in palate development. Histol Histopathol 28:1–13
pubmed: 23233055
Rot I, Mardesic-Brakus S, Costain WJ et al (2014) Role of skeletal muscle in mandible development. Histol Histopathol 29:1377–1394
pubmed: 24867377
Rot I, Baguma-Nibasheka M, Costain WJ et al (2017) Role of skeletal muscle in ear development. Histol Histopathol 32:987–1000
pubmed: 28271491
Rot-Nikcevic I, Reddy T, Downing KJ et al (2006) Myf5
pubmed: 16208536 doi: 10.1007/s00427-005-0024-9
Rot-Nikcevic I, Downing KJ, Hall BK et al (2007) Development of the mouse mandibles and clavicles in the absence of skeletal myogenesis. Histol Histopathol 22:51–60
pubmed: 17128411
Rudnicki MA, Schnegelsberg PN, Stead RH et al (1993) MyoD or Myf-5 is required for the formation of skeletal muscle. Cell 75:1351–1359
pubmed: 8269513 doi: 10.1016/0092-8674(93)90621-V
Sadler TW (2012) Langman’s medical embryology. Lippincott Williams & Wilkins, Philadelphia
Sarnat HB (1994) New insights into the pathogenesis of congenital myopathies. J Child Neurol 9:193–201
pubmed: 8006374 doi: 10.1177/088307389400900218
Selinger CI, Cooper WA, Al-Sohaily S et al (2011) Loss of special AT-rich binding protein 1 expression is a marker of poor survival in lung cancer. J Thorac Oncol 6:1179–1189
pubmed: 21597389 doi: 10.1097/JTO.0b013e31821b4ce0
Severinsen MCK, Pedersen BK (2020) Muscle-organ crosstalk: the emerging roles of myokines. Endocr Rev 41:594–609
pubmed: 32393961 pmcid: 7288608 doi: 10.1210/endrev/bnaa016
Shea CA, Rolfe RA, Murphy P (2015) The importance of foetal movement for co-ordinated cartilage and bone development in utero. Bone Joint Res 4:105–116
pubmed: 26142413 pmcid: 4602203 doi: 10.1302/2046-3758.47.2000387
Simonds AK (2006) Recent advances in respiratory care for neuromuscular disease. Chest 130:1879–1886
pubmed: 17167012 doi: 10.1378/chest.130.6.1879
Smith CM, Finger JH, Kadin JA et al (2014) Gene Expression Database for mouse development (GXD): putting developmental expression information at your fingertips. Dev Dyn 243:1176–1186
pubmed: 24958384 pmcid: 4415381 doi: 10.1002/dvdy.24155
Sugimura K, Lenne PF, Graner F (2016) Measuring forces and stresses in situ in living tissues. Development 143:186–196
pubmed: 26786209 doi: 10.1242/dev.119776
Suzuki M, Svendsen CN (2008) Combining growth factor and stem cell therapy for amyotrophic lateral sclerosis. Trends Neurosci 31:192–198
pubmed: 18329734 doi: 10.1016/j.tins.2008.01.006
Thompson DW (1917) On Growth and Form. Cambridge University Press, Cambridge
doi: 10.5962/bhl.title.11332
Tovar-y-Romo LB, Ramirez-Jarquin UN, Lazo-Gomez R et al (2014) Trophic factors as modulators of motor neuron physiology and survival: implications for ALS therapy. Front Cell Neurosci. https://doi.org/10.3389/fncel.2014.00061
Urbanska M, Winzi M, Neumann K et al (2017) Single-cell mechanical phenotype is an intrinsic marker of reprogramming and differentiation along the mouse neural lineage. Development 144:4313–4321
pubmed: 29183942 doi: 10.1242/dev.155218
Warburton D, El-Hashash A, Carraro G et al (2010) Lung organogenesis. Curr Top Dev Biol 90:73–158
pubmed: 20691848 pmcid: 3340128 doi: 10.1016/S0070-2153(10)90003-3
Woronowicz KC, Schneider RA (2019) Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw. EvoDevo. https://doi.org/10.1186/s13227-019-0131-8
Wulf A (2015) The invention of nature: Alexander von Humboldt’s new world. Alfred A. Knopf, New York
Xu HY, Xue JX, Gao H et al (2019) Fluvastatin-mediated down-regulation of SATB1 affects aggressive phenotypes of human non-small-cell lung cancer cell line H292. Life Sci 222:212–220
pubmed: 30557545 doi: 10.1016/j.lfs.2018.12.022
Zelditch ML, Wood AR, Bonett RM et al (2008) Modularity of the rodent mandible: Integrating bones, muscles, and teeth. Evol Dev 10:756–768
pubmed: 19021747 doi: 10.1111/j.1525-142X.2008.00290.x
Zhang J, Yang Z, Wu SM (2005) Development of cholinergic amacrine cells is visual activity-dependent in the postnatal mouse retina. J Comp Neurol 484:331–343
pubmed: 15739235 doi: 10.1002/cne.20470
Zhang J, Wu D, Turnbull DH (2018) In utero MRI of mouse embryos. Methods Mol Biol 1718:285–296
pubmed: 29341015 pmcid: 6091218 doi: 10.1007/978-1-4939-7531-0_17
Zhang C, Yu W-Q, Hoshino A et al (2019) Development of ON and OFF cholinergic amacrine cells in the retina. J Comp Neurol 527:174–186
pubmed: 29405294 doi: 10.1002/cne.24405

Auteurs

Boris Kablar (B)

Department of Medical Neuroscience, Anatomy and Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada. bkablar@dal.ca.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male
Humans Meals Time Factors Female Adult

Classifications MeSH