Bias reduction for semi-competing risks frailty model with rare events: application to a chronic kidney disease cohort study in South Korea.

Cohort study Firth’s correction Penalized likelihood Rare event Semi-competing risks

Journal

Lifetime data analysis
ISSN: 1572-9249
Titre abrégé: Lifetime Data Anal
Pays: United States
ID NLM: 9516348

Informations de publication

Date de publication:
Apr 2024
Historique:
received: 09 12 2022
accepted: 16 10 2023
pubmed: 13 11 2023
medline: 13 11 2023
entrez: 13 11 2023
Statut: ppublish

Résumé

In a semi-competing risks model in which a terminal event censors a non-terminal event but not vice versa, the conventional method can predict clinical outcomes by maximizing likelihood estimation. However, this method can produce unreliable or biased estimators when the number of events in the datasets is small. Specifically, parameter estimates may converge to infinity, or their standard errors can be very large. Moreover, terminal and non-terminal event times may be correlated, which can account for the frailty term. Here, we adapt the penalized likelihood with Firth's correction method for gamma frailty models with semi-competing risks data to reduce the bias caused by rare events. The proposed method is evaluated in terms of relative bias, mean squared error, standard error, and standard deviation compared to the conventional methods through simulation studies. The results of the proposed method are stable and robust even when data contain only a few events with the misspecification of the baseline hazard function. We also illustrate a real example with a multi-centre, patient-based cohort study to identify risk factors for chronic kidney disease progression or adverse clinical outcomes. This study will provide a better understanding of semi-competing risk data in which the number of specific diseases or events of interest is rare.

Identifiants

pubmed: 37955788
doi: 10.1007/s10985-023-09612-9
pii: 10.1007/s10985-023-09612-9
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

310-326

Subventions

Organisme : Korea Centers for Disease Control and Prevention
ID : 2011E3300300
Pays : Republic of Korea
Organisme : Korea Centers for Disease Control and Prevention
ID : 2012E3301100
Pays : Republic of Korea
Organisme : Korea Centers for Disease Control and Prevention
ID : 2013E3301600
Pays : Republic of Korea
Organisme : Korea Centers for Disease Control and Prevention
ID : 2013E3301601
Pays : Republic of Korea
Organisme : Korea Centers for Disease Control and Prevention
ID : 2013E3301602
Pays : Republic of Korea
Organisme : Korea Centers for Disease Control and Prevention
ID : 2016E3300200
Pays : Republic of Korea
Organisme : Korea Centers for Disease Control and Prevention
ID : 2016E3300201
Pays : Republic of Korea
Organisme : Korea Centers for Disease Control and Prevention
ID : 2016E3300202
Pays : Republic of Korea
Organisme : Korea Centers for Disease Control and Prevention
ID : 2019E320100
Pays : Republic of Korea
Organisme : Korea Centers for Disease Control and Prevention
ID : 2019E320101
Pays : Republic of Korea
Organisme : Korea Centers for Disease Control and Prevention
ID : 2019E320102
Pays : Republic of Korea
Organisme : Korea Centers for Disease Control and Prevention
ID : 2022-11-007
Pays : Republic of Korea
Organisme : Ministry of Science and ICT, South Korea
ID : 2021R1A2C1012865
Organisme : Ministry of Science and ICT, South Korea
ID : 2019R1A6A1A11051177
Organisme : Ministry of Science and ICT, South Korea
ID : RS-2022-00155966

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Ambler G, Seaman S, Omar R (2012) An evaluation of penalised survival methods for developing prognostic models with rare events. Stat Med 31(11–12):1150–1161
doi: 10.1002/sim.4371 pubmed: 21997569
Cox DR (1972) Regression models and life-tables. J R Stat Soc Ser B (Methodol) 34(2):187–202
Cox DR (1975) Partial likelihood. Biometrika 62(2):269–276
doi: 10.1093/biomet/62.2.269
Fine JP, Jiang H, Chappell R (2001) On semi-competing risks data. Biometrika 88(4):907–919
doi: 10.1093/biomet/88.4.907
Firth D (1993) Bias reduction of maximum likelihood estimates. Biometrika 80(1):27–38
doi: 10.1093/biomet/80.1.27
Ha ID, Xiang L, Peng M, Jeong J-H, Lee Y (2020) Frailty modelling approaches for semi-competing risks data. Lifetime Data Anal 26(1):109–133
doi: 10.1007/s10985-019-09464-2 pubmed: 30734137
Heinze G, Schemper M (2001) A solution to the problem of monotone likelihood in cox regression. Biometrics 57(1):114–119
doi: 10.1111/j.0006-341X.2001.00114.x pubmed: 11252585
Kang E, Han M, Kim H, Park SK, Lee J, Hyun YY, Kim Y-S, Chung W, Kim HJ, Oh YK et al (2017) Baseline general characteristics of the korean chronic kidney disease: report from the korean cohort study for outcomes in patients with chronic kidney disease (know-ckd). J Korean Med Sci 32(2):221–230
doi: 10.3346/jkms.2017.32.2.221 pubmed: 28049232
Kohl M, Plischke M, Leffondré K, Heinze G (2015) Pshreg: a sas macro for proportional and nonproportional subdistribution hazards regression. Comput Methods Programs Biomed 118(2):218–233
doi: 10.1016/j.cmpb.2014.11.009 pubmed: 25572709 pmcid: 4673318
Lee Y, Nelder JA (1996) Hierarchical generalized linear models. J R Stat Soc Ser B (Methodol) 58(4):619–656
Lee Y, Nelder JA, Pawitan Y (2018) Generalized linear models with random effects: unified analysis via H-likelihood. Chapman and Hall/CRC, Florida
doi: 10.1201/9781315119953
Oh K-H, Park SK, Park HC, Chin HJ, Chae DW, Choi KH, Han SH, Yoo TH, Lee K, Kim Y-S et al (2014) Know-ckd (korean cohort study for outcome in patients with chronic kidney disease): design and methods. BMC Nephrol 15(1):1–9
doi: 10.1186/1471-2369-15-80
O’Mahony C, Jichi F, Pavlou M, Monserrat L, Anastasakis A, Rapezzi C (2014) A novel clinical risk prediction model for sudden cardiac death in hypertrophic cardiomyopathy (hcm risk-scd). Eur Heart J 35(30):2010–2020
doi: 10.1093/eurheartj/eht439 pubmed: 24126876
Omar RZ, Morton LS, Halliday DA, Danns EM, Beirne MT, Blot WJ, Taylor KM (2001) Outlet strut fracture of björk-shiley convexo concave heart valves: the uk cohort study heart. Heart 865(1):57–62
Putter H, Fiocco M, Geskus RB (2007) Tutorial in biostatistics: competing risks and multi-state models. Stat Med 26(11):2389–2430
doi: 10.1002/sim.2712 pubmed: 17031868
Xu J, Kalbfleisch JD, Tai B (2010) Statistical analysis of illness-death processes and semicompeting risks data. Biometrics 66(3):716–725
doi: 10.1111/j.1541-0420.2009.01340.x pubmed: 19912171

Auteurs

Jayoun Kim (J)

Medical Research Collaborating Center, Seoul National University Hospital, Seoul, Republic of Korea.

Boram Jeong (B)

Department of Statistics, Ewha Womans University, Seoul, Republic of Korea.

Il Do Ha (ID)

Department of Statistics, Pukyong National University, Busan, Republic of Korea.

Kook-Hwan Oh (KH)

Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea.

Ji Yong Jung (JY)

Division of Nephrology, Department of Internal Medicine, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon, Republic of Korea.

Jong Cheol Jeong (JC)

Division of Nephrology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.

Donghwan Lee (D)

Department of Statistics, Ewha Womans University, Seoul, Republic of Korea. donghwan.lee@ewha.ac.kr.

Classifications MeSH