Automatic Sleep Staging Based on Contextual Scalograms and Attention Convolution Neural Network Using Single-channel EEG.


Journal

IEEE journal of biomedical and health informatics
ISSN: 2168-2208
Titre abrégé: IEEE J Biomed Health Inform
Pays: United States
ID NLM: 101604520

Informations de publication

Date de publication:
13 Nov 2023
Historique:
pubmed: 13 11 2023
medline: 13 11 2023
entrez: 13 11 2023
Statut: aheadofprint

Résumé

Single-channel EEG based sleep staging is of interest to researchers due to its broad application prospect in daily sleep monitoring recently. We proposed using contextual scalograms as input and developed a convolutional neural network with attention modules named Co-ScaleNet for sleep staging. The contextual scalograms were obtained by combining the same color channels of three original RGB scalograms from consecutive epochs, and a simple and efficient data augmentation was designed according to their various forms. The Co-ScaleNet consists of two main parts. Firstly, three parallel convolutional branches with attention modules correspondingly extract and fuse features from contextual scalograms at the top layers. The remaining part is a stack of lightweight blocks. We achieved an overall accuracy of 87.0% for healthy individuals, 84.7% for depressed patients. And we obtained comparable performance on the public Sleep-EDFx (82.8%), ISRUC (84.6%) and SHHS datasets (87.7%), including a high recall of N1. The contextual scalograms of R channel as input achieved the best performance, which conform to the features of interest in visual scoring. The attention modules improved the recall of N1 and N3. Overall, the contextual scalograms provided a novel scheme for both contextual information extraction and data augmentation. Our study successfully expanded its application to depression datasets, as well as patients with sleep apnea, demonstrating its wide applicability.

Identifiants

pubmed: 37955995
doi: 10.1109/JBHI.2023.3332503
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Auteurs

Classifications MeSH