Development of a double-layer electrospun patch as a potential prenatal treatment for myelomeningocele.
double-layer patch
electrospinning
myelomeningocele
polycaprolactone
Journal
Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society
ISSN: 1524-475X
Titre abrégé: Wound Repair Regen
Pays: United States
ID NLM: 9310939
Informations de publication
Date de publication:
13 Nov 2023
13 Nov 2023
Historique:
revised:
05
09
2023
received:
29
03
2023
accepted:
12
10
2023
pubmed:
14
11
2023
medline:
14
11
2023
entrez:
13
11
2023
Statut:
aheadofprint
Résumé
Myelomeningocele (MMC) is a congenital defect of the spine characterised by meningeal and spinal cord protrusion through the open vertebral arches. This defect causes progressive prenatal damage of the spinal cord, leading to lifelong handicap. Although mid-trimester surgical repair may reduce part of the handicap, an earlier and less invasive approach would further improve the prognosis, possibly minimising maternal and foetal risks. Several studies have proposed an alternative approach to surgical repair by covering the defect with a patch and protecting the exposed neural tissue. Our study aims to elaborate on a waterproof and biodegradable bioactive patch for MMC prenatal foetal repair. We developed a double-layer patch that can provide a waterproof coverage for the spinal cord, with a bioactive side, conducive to cell proliferation, and an antiadhesive side to avoid its attachment to the medulla.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2023 The Wound Healing Society.
Références
Adzick NS. Fetal myelomeningocele: natural history, pathophysiology, and in-utero intervention. Semin Fetal Neonatal Med. 2010;15(1):9-14. doi:10.1016/j.siny.2009.05.002
Heffez DS, Aryanpur J, Hutchins GM, Freeman JM. The paralysis associated with myelomeningocele: clinical and experimental data implicating a preventable spinal cord injury. Neurosurgery. 1990;26(6):987-992.
Au KS, Ashley-Koch A, Northrup H. Epidemiologic and genetic aspects of spina bifida and other neural tube defects. Dev Disabil Res Rev. 2010;16(1):6-15. doi:10.1002/ddrr.93
Meuli M, Meuli-Simmen C, Hutchins GM, et al. In utero surgery rescues neurological function at birth in sheep with spina bifida. Nat Med. 1995;1(4):342-347. doi:10.1038/nm0495-342
Encinas JL, García-Cabezas MÁ, Barkovich J, et al. Maldevelopment of the cerebral cortex in the surgically induced model of myelomeningocele: implications for fetal neurosurgery. J Pediatr Surg. 2011;46(4):713-722. doi:10.1016/j.jpedsurg.2010.11.028
Adzick NS, Thom EA, Spong CY, et al. A randomized trial of prenatal versus postnatal repair of myelomeningocele. N Engl J Med. 2011;364(11):993-1004. doi:10.1056/NEJMoa1014379
Bouchard S, Davey MG, Rintoul NE, Walsh DS, Rorke LB, Adzick NS. Correction of hindbrain herniation and anatomy of the vermis after in utero repair of myelomeningocele in Sheep. J Pediatr Surg. 2003;38(3):451-458. doi:10.1053/jpsu.2003.50078
Bevilacqua NS, Pedreira DAL. Fetoscopy for meningomyelocele repair: past, present and future. Einstein. 2015;13(2):283-289. doi:10.1590/S1679-45082015RW3032
Meuli M, Meuli-Simmen C, Yingling CD, et al. In utero repair of experimental myelomeningocele saves neurological function at birth. J Pediatr Surg. 1996;31(3):397-402. doi:10.1016/s0022-3468(96)90746-0
Arthuis C, James S, Bussières L, et al. Laparotomy-assisted 2-port fetoscopic repair of spina bifida aperta: report of a single-center experience in Paris, France. Fetal Diagn Ther. 2022;49:377-384. doi:10.1159/000525552
Ben Miled S, Loeuillet L, Duong Van Huyen J-P, et al. Severe and progressive neuronal loss in myelomeningocele begins before 16 weeks of pregnancy. Am J Obstet Gynecol. 2020;223(2):256.e1-256.e9. doi:10.1016/j.ajog.2020.02.052
Watanabe M, Li H, Kim AG, et al. Complete tissue coverage achieved by scaffold-based tissue engineering in the fetal sheep model of myelomeningocele. Biomaterials. 2016;76:133-143. doi:10.1016/j.biomaterials.2015.10.051
Gimenez A, Kopkin R, Chang DK, Belfort M, Reece EM. Advances in fetal surgery: current and future relevance in plastic surgery. Semin Plast Surg. 2019;33(3):204-212. doi:10.1055/s-0039-1693431
Watanabe M, Kim AG, Flake AW. Tissue engineering strategies for fetal myelomeningocele repair in animal models. Fetal Diagn Ther. 2015;37(3):197-205. doi:10.1159/000362931
Winkler SM, Harrison MR, Messersmith PB. Biomaterials in fetal surgery. Biomater Sci. 2019;7(8):3092-3109. doi:10.1039/C9BM00177H
Tatu R, Oria M, Pulliam S, et al. Using poly(l-lactic acid) and poly(ɛ-caprolactone) blends to fabricate self-expanding, watertight and biodegradable surgical patches for potential fetoscopic myelomeningocele repair. J Biomed Mater Res B Appl Biomater. 2019;107(2):295-305. doi:10.1002/jbm.b.34121
Annor AH, Tang ME, Pui CL, et al. Effect of enzymatic degradation on the mechanical properties of biological scaffold materials. Surg Endosc. 2012;26(10):2767-2778. doi:10.1007/s00464-012-2277-5
Middleton JC, Tipton AJ. Synthetic biodegradable polymers as orthopedic devices. Biomaterials. 2000;21(23):2335-2346. doi:10.1016/s0142-9612(00)00101-0
Tatu RR, Oria M, Rao MB, Peiro JL, Lin C-Y. Biodegradation of poly(l-lactic acid) and poly(ε-caprolactone) patches by human amniotic fluid in an in-vitro simulated fetal environment. Sci Rep. 2022;12(1):3950. doi:10.1038/s41598-022-07681-8
Amokrane G, Falentin-Daudré C, Ramtani S, Migonney V. A simple method to functionalize PCL surface by grafting bioactive polymers using UV irradiation. IRBM. 2018;39(4):268-278. doi:10.1016/j.irbm.2018.07.002
Amokrane G, Humblot V, Jubeli E, et al. Electrospun poly(ε-caprolactone) fiber scaffolds functionalized by the covalent grafting of a bioactive polymer: surface characterization and influence on in vitro biological response. ACS Omega. 2019;4(17):17194-17208. doi:10.1021/acsomega.9b01647
Lam M, Moris V, Humblot V, Migonney V, Falentin-Daudre C. A simple way to graft a bioactive polymer-polystyrene sodium sulfonate on silicone surfaces. Eur Polym J. 2020;128:109608. doi:10.1016/j.eurpolymj.2020.109608
Venkatesan JK, Cai X, Meng W, et al. PNaSS-grafted PCL film-guided RAAV TGF-β gene therapy activates the chondrogenic activities in human bone marrow aspirates. Hum Gene Ther. 2021;32(17-18):895-906. doi:10.1089/hum.2020.329
Venkatesan JK, Meng W, Rey-Rico A, et al. Enhanced chondrogenic differentiation activities in human bone marrow aspirates via Sox9 overexpression mediated by PNaSS-grafted PCL film-guided RAAV gene transfer. Pharmaceutics. 2020;12(3):280. doi:10.3390/pharmaceutics12030280
Cheng H, Yang X, Che X, Yang M, Zhai G. Biomedical application and controlled drug release of electrospun fibrous materials. Mater Sci Eng C Mater Biol Appl. 2018;90:750-763. doi:10.1016/j.msec.2018.05.007
Tallawi M, Dippold D, Rai R, et al. Novel PGS/PCL electrospun fiber mats with patterned topographical features for cardiac patch applications. Mater Sci Eng C Mater Biol Appl. 2016;69:569-576. doi:10.1016/j.msec.2016.06.083
Lam M, Falentin-Daudré C. Characterization of plasmatic proteins adsorption on poly(styrene sodium sulfonate) functionalized silicone surfaces. Biophys Chem. 2022;285:106804. doi:10.1016/j.bpc.2022.106804
Felgueiras H, Ben Aissa I, Evans M, Migonney V. Contributions of adhesive proteins to the cellular and bacterial response to surfaces treated with bioactive polymers: case of poly(sodium styrene sulfonate) grafted titanium surfaces. J Mater Sci Mater Med. 2015;26:261. doi:10.1007/s10856-015-5596-y
Yang B, Gong C, Zhao X, et al. Preventing postoperative abdominal adhesions in a rat model with PEG-PCL-PEG hydrogel. Int J Nanomed. 2012;7:547-557. doi:10.2147/IJN.S26141
Ten Broek RPG, Kok-Krant N, Verhoeve HR, van Goor H, Bakkum EA. Efficacy of polyethylene glycol adhesion barrier after gynecological laparoscopic surgery: results of a randomized controlled pilot study. Gynecol Surg. 2012;9(1):29-35. doi:10.1007/s10397-011-0698-0
Askari F, Zandi M, Shokrolahi P, Tabatabaei MH, Hajirasoliha E. Reduction in protein absorption on ophthalmic lenses by PEGDA bulk modification of silicone acrylate-based formulation. Prog Biomater. 2019;8(3):169-183. doi:10.1007/s40204-019-00119-x
Lam M, Vayron R, Delille R, Migonney V, Falentin-Daudré C. Influence of poly(styrene sodium sulfonate) grafted silicone breast implant's surface on the biological response and its mechanical properties. Mater Today Commun. 2022;31:103318. doi:10.1016/j.mtcomm.2022.103318
Chouirfa H, Migonney V, Falentin-Daudré C. Grafting bioactive polymers onto titanium implants by UV irradiation. RSC Adv. 2016;6(17):13766-13771. doi:10.1039/C5RA24497H
Felgueiras H, Migonney V. Cell spreading and morphology variations as a result of protein adsorption and bioactive coating on Ti6Al4V surfaces. IRBM. 2016;37:165-171. doi:10.1016/j.irbm.2016.03.006
Li M, Joung D, Hughes B, Waldman SD, Kozinski JA, Hwang DK. Wrinkling non-spherical particles and its application in cell attachment promotion. Sci Rep. 2016;6(1):30463. doi:10.1038/srep30463