Achieving net-zero in the dry eye disease care pathway.


Journal

Eye (London, England)
ISSN: 1476-5454
Titre abrégé: Eye (Lond)
Pays: England
ID NLM: 8703986

Informations de publication

Date de publication:
13 Nov 2023
Historique:
received: 30 04 2023
accepted: 25 10 2023
revised: 27 09 2023
medline: 14 11 2023
pubmed: 14 11 2023
entrez: 13 11 2023
Statut: aheadofprint

Résumé

Climate change is a threat to human health and wellbeing across the world. In recent years, there has been a surge in awareness of this crisis, leading to many countries and organisations setting "net-zero" targets. This entails minimising carbon emissions and neutralising remaining emissions by removing carbon from the atmosphere. At the 2022 United Nations Climate Change Conference (COP27), commitments to transition away from fossil fuels and augment climate targets were underwhelming. It is therefore imperative for public and private sector organisations to demonstrate successful implementation of net-zero and set a precedent for the global political consensus. As a top 10 world employer, the United Kingdom National Health Service (NHS) has pledged to reach net-zero by 2045. The NHS has already taken positive steps forward, but its scale and complexity as a health system means stakeholders in each of its services must highlight the specifications for further progress. Dry eye disease is a chronic illness with an estimated global prevalence of 29.5% and an environmentally damaging care pathway. Moreover, environmental damage is a known aggravator of dry eye disease. Worldwide management of this illness generates copious amounts of non-recyclable waste, utilises inefficient supply chains and involves recurrent follow-up appointments and prescriptions. By mapping the dry eye disease care pathway to environmental impact, in this review we will highlight seven key areas in which reduced emissions and pollution could be targeted. Examining these approaches for improved environmental sustainability is critical in driving the transformation needed to preserve our health and wellbeing. 摘要: 气候变化对全世界人类健康和福祉构成威胁。近年来, 人们对这场危机的认识显著深入增, 因此许多国家和组织设定了“净零”目标。为达目标需要尽量减少碳排放, 并通过消除大气中的碳来中和剩余排放。在2022年联合国气候变化大会(COP27)上, 关于减少化石燃料使用和加强气候管理的承诺未达目标。因此, 公共和私营部门组织必须证明净零排放的成功实施, 并为全球政治共识开创先例。作为世界十大雇主之一, 英国国家卫生服务局(NHS)承诺在2045年实现净零排放。NHS已采取积极行动, 但卫生系统的规模和复杂性意味着每一项服务的获益者必须强调进一步开展的规范性。干眼症是一种慢性疾病, 估计全球患病率为29.5%, 是受环境影响的一种疾病。此外, 环境破坏是已知的干眼症的加重因素。在世界范围内对这种疾病的治疗产生了大量不可回收的环境污染物, 使得供应链利用低效, 其中包括反复的复诊预约单和处方的资源浪费。通过绘制环境对于干眼护理路径影响的关系图谱, 在本文中, 我们将强调可能以减少排放和污染为目标的7个重要领域, 研究这些方法对于改善环境可持续性和推动保护我们健康与福祉所需的转型至关重要。.

Autres résumés

Type: Publisher (chi)
摘要: 气候变化对全世界人类健康和福祉构成威胁。近年来, 人们对这场危机的认识显著深入增, 因此许多国家和组织设定了“净零”目标。为达目标需要尽量减少碳排放, 并通过消除大气中的碳来中和剩余排放。在2022年联合国气候变化大会(COP27)上, 关于减少化石燃料使用和加强气候管理的承诺未达目标。因此, 公共和私营部门组织必须证明净零排放的成功实施, 并为全球政治共识开创先例。作为世界十大雇主之一, 英国国家卫生服务局(NHS)承诺在2045年实现净零排放。NHS已采取积极行动, 但卫生系统的规模和复杂性意味着每一项服务的获益者必须强调进一步开展的规范性。干眼症是一种慢性疾病, 估计全球患病率为29.5%, 是受环境影响的一种疾病。此外, 环境破坏是已知的干眼症的加重因素。在世界范围内对这种疾病的治疗产生了大量不可回收的环境污染物, 使得供应链利用低效, 其中包括反复的复诊预约单和处方的资源浪费。通过绘制环境对于干眼护理路径影响的关系图谱, 在本文中, 我们将强调可能以减少排放和污染为目标的7个重要领域, 研究这些方法对于改善环境可持续性和推动保护我们健康与福祉所需的转型至关重要。.

Identifiants

pubmed: 37957294
doi: 10.1038/s41433-023-02814-3
pii: 10.1038/s41433-023-02814-3
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : DH | NIHR | Invention for Innovation (i4i)
ID : II-LA-1117-20001
Organisme : DH | NIHR | Invention for Innovation (i4i)
ID : II-LA-1117-20001
Organisme : DH | NIHR | Invention for Innovation (i4i)
ID : II-LA-1117-20001
Organisme : DH | NIHR | Invention for Innovation (i4i)
ID : II-LA-1117-20001

Informations de copyright

© 2023. The Author(s).

Références

Romanello M, Di Napoli C, Drummond P, Green C, Kennard H, Lampard P, et al. The 2022 report of the Lancet Countdown on health and climate change: health at the mercy of fossil fuels. Lancet. 2022;400:1619–54.
pubmed: 36306815 doi: 10.1016/S0140-6736(22)01540-9
The United Nations. For a livable climate: Net-zero commitments must be backed by credible action. 2022. https://www.un.org/en/climatechange/net-zero-coalition .
NHS England. Delivering a net zero NHS. 2022. https://www.england.nhs.uk/greenernhs/a-net-zero-nhs/ .
Watts N, Bailie P, Boycott K, Braithwaite I, Cosford P, Daniel J, et al. Delivering a ‘Net Zero’ National Health Service. 2020. https://www.england.nhs.uk/greenernhs/wp-content/uploads/sites/51/2020/10/delivering-a-net-zero-national-health-service.pdf .
GOV.UK. UK health services make landmark pledge to achieve net zero. 2021. https://www.gov.uk/government/news/uk-health-services-make-landmark-pledge-to-achieve-net-zero .
The Royal College of Ophthalmologists. New RCOphth Workforce Census illustrates the severe shortage of eye doctors in the UK. 2019. https://www.rcophth.ac.uk/news-views/new-rcophth-workforce-census-illustrates-the-severe-shortage-of-eye-doctors-in-the-uk/ .
Somner J, Scott K, Morris D, Gaskell A, Shepherd I. Ophthalmology carbon footprint: something to be considered? J Cataract Refract Surg. 2009;35:202–3.
pubmed: 19101448 doi: 10.1016/j.jcrs.2008.09.026
Morris DS, Wright T, Somner JE, Connor A. The carbon footprint of cataract surgery. Eye. 2013;27:495–501.
pubmed: 23429413 pmcid: 3626018 doi: 10.1038/eye.2013.9
Goel H, Wemyss TA, Harris T, Steinbach I, Stancliffe R, Cassels-Brown A, et al. Improving productivity, costs and environmental impact in International Eye Health Services: using the ‘Eyefficiency’ cataract surgical services auditing tool to assess the value of cataract surgical services. BMJ Open Ophthalmol. 2021;6:e000642.
pubmed: 34104796 pmcid: 8141432 doi: 10.1136/bmjophth-2020-000642
Khor HG, Cho I, Lee K, Chieng LL. Waste production from phacoemulsification surgery. J Cataract Refract Surg. 2020;46:215–21.
pubmed: 32126034 doi: 10.1097/j.jcrs.0000000000000009
Tauber J, Chinwuba I, Kleyn D, Rothschild M, Kahn J, Thiel CL. Quantification of the cost and potential environmental effects of unused pharmaceutical products in cataract surgery. JAMA Ophthalmol. 2019;137:1156–63.
pubmed: 31369052 pmcid: 6681547 doi: 10.1001/jamaophthalmol.2019.2901
Thiel CL, Schehlein E, Ravilla T, Ravindran RD, Robin AL, Saeedi OJ, et al. Cataract surgery and environmental sustainability: Waste and lifecycle assessment of phacoemulsification at a private healthcare facility. J Cataract Refract Surg. 2017;43:1391–8.
pubmed: 29223227 pmcid: 5728421 doi: 10.1016/j.jcrs.2017.08.017
Ferrero A, Thouvenin R, Hoogewoud F, Marcireau I, Offret O, Louison P, et al. The carbon footprint of cataract surgery in a French University Hospital. J Fr Ophtalmol. 2022;45:57–64.
pubmed: 34823888 doi: 10.1016/j.jfo.2021.08.004
Latta M, Shaw C, Gale J. The carbon footprint of cataract surgery in Wellington. N. Z Med J. 2021;134:13–21.
pubmed: 34531593
Moussa G, Ch’ng SW, Ziaei H, Jalil A, Park DY, Patton N, et al. The use of fluorinated gases and quantification of carbon emission for common vitreoretinal procedures. Eye (2022). https://doi.org/10.1038/s41433-022-02145-9 .
Namburar S, Pillai M, Varghese G, Thiel C, Robin AL. Waste generated during glaucoma surgery: A comparison of two global facilities. Am J Ophthalmol Case Rep. 2018;12:87–90.
pubmed: 30364583 pmcid: 6197147 doi: 10.1016/j.ajoc.2018.10.002
Chadwick O, Cox A. Response to Tetsumoto et al. regarding the use of fluorinated gases in retinal detachment surgery. The environmental impact of fluorinated gases. Eye. 2021;35:2891.
pubmed: 32963309 doi: 10.1038/s41433-020-01197-z
Vo LV, Mastrorilli V, Muto AJ, Emerson GG. Reuse of shipping materials in the intravitreal bevacizumab supply chain: feasibility, cost, and environmental impact. Int J Retin Vitreous. 2023;9:34.
doi: 10.1186/s40942-023-00474-9
Buchan JC, Thiel CL, Steyn A, Somner J, Venkatesh R, Burton MJ, et al. Addressing the environmental sustainability of eye health-care delivery: a scoping review. Lancet Planet Health. 2022;6:e524–e534.
pubmed: 35709809 doi: 10.1016/S2542-5196(22)00074-2
Wong YL, Noor M, James KL, Aslam TM. Ophthalmology going greener: a narrative review. Ophthalmol Ther. 2021;10:845–57.
pubmed: 34633635 pmcid: 8502635 doi: 10.1007/s40123-021-00404-8
Stapleton F, Alves M, Bunya VY, Jalbert I, Lekhanont K, Malet F, et al. TFOS DEWS II Epidemiology Report. Ocul Surf. 2017;15:334–65.
pubmed: 28736337 doi: 10.1016/j.jtos.2017.05.003
Papas EB. The global prevalence of dry eye disease: A Bayesian view. Ophthalmic Physiol Opt. 2021;41:1254–66.
pubmed: 34545606 doi: 10.1111/opo.12888
Alves M, Asbell P, Dogru M, Giannaccare G, Grau A, Gregory D, et al. TFOS Lifestyle Report: Impact of environmental conditions on the ocular surface. Ocul Surf. 2023;29:1–52.
pubmed: 37062427 doi: 10.1016/j.jtos.2023.04.007
Future Market Insights. Dry Eye Syndrome Treatment Market. 2022. https://www.futuremarketinsights.com/reports/dry-eye-syndrome-treatment-market .
Vakros G, Scollo P, Hodson J, Murray PI, Rauz S. Anxiety and depression in inflammatory eye disease: exploring the potential impact of topical treatment frequency as a putative psychometric item. BMJ Open Ophthalmol. 2021;6:e000649.
pubmed: 34307892 pmcid: 8261890 doi: 10.1136/bmjophth-2020-000649
Javidi H, Poonit N, Patel RP, Barry RJ, Rauz S, Murray PI. Adherence to topical medication in patients with inflammatory eye disease. Ocul Immunol Inflamm. 2021;29:890–5.
pubmed: 31944132 doi: 10.1080/09273948.2019.1699122
Giannaccare G, Breda JB. For a greener future of ophthalmology. Eye. 2022;36:656–7.
pubmed: 33608644 doi: 10.1038/s41433-021-01445-w
Govindasamy G, Lim C, Riau AK, Tong L. Limiting plastic waste in dry eye practice for environmental sustainability. Ocul Surf. 2022;25:87–88.
pubmed: 35613675 pmcid: 9124366 doi: 10.1016/j.jtos.2022.05.005
Birkhoff M, Marie C Sustainability measures are the key to meeting ESG commitments. 2022. https://ondrugdelivery.com/wp-content/uploads/2022/04/Sustainability-ONdD-AprMay-2022-Issue-132-LoRes.pdf .
The Earthshot Prize. Build a waste-free world 2022 winner. 2022. https://earthshotprize.org/winners-finalists/notpla/ .
Latham K The world’s first ‘infinite’ plastic. 2021. https://www.bbc.com/future/article/20210510-how-to-recycle-any-plastic .
Bukowski H, Boleslaw R TerraCycle: A Circular Economy Business Model Case. 2020. http://www.r2piproject.eu/wp-content/uploads/2019/05/TerraCycle-Case-Study.pdf .
Janković S Blister pack recycling scheme: ‘We’ve seen an increase in footfall as a result’. 2022. https://www.thepharmacist.co.uk/clinical-ambassadors/healthy-living/blister-pack-recycling-scheme-weve-seen-an-increase-in-footfall-as-a-result/ .
Recycle Now. Which plastic tubes can’t be recycled? 2022. https://www.recyclenow.com/recycle-an-item/plastic-tubes .
Stacey M Aluminium Recyclability and Recycling. 2015. https://international-aluminium.org/wp-content/uploads/2017/12/Aluminium-Recyclability-Recycling-TSC-2.pdf .
Recycle Now. How to recycle medicines. 2022. https://www.recyclenow.com/recycle-an-item/medicines .
Kaiser K, Schmid M, Schlummer M. Recycling of polymer-based multilayer packaging: a review. Recycling. 2018;3:1.
doi: 10.3390/recycling3010001
Rebulla P, Querol S, Pupella S, Prati D, Delgadillo J, De Angelis V. Recycling apparent waste into biologicals: the case of umbilical cord blood in Italy and Spain. Front Cell Dev Biol. 2022;9:812038.
pubmed: 35059402 pmcid: 8763965 doi: 10.3389/fcell.2021.812038
Rauz S, Koay SY, Foot B, Kaye SB, Figueiredo F, Burdon MA, et al. The Royal College of Ophthalmologists guidelines on serum eye drops for the treatment of severe ocular surface disease: full report. Eye (2017). https://doi.org/10.1038/eye.2017.209 .
Tseng CL, Chen ZY, Renn TY, Hsiao SH, Burnouf T. Solvent/Detergent virally inactivated serum eye drops restore healthy ocular epithelium in a rabbit model of dry-eye syndrome. PLoS One. 2016;11:e0153573.
pubmed: 27100624 pmcid: 4839776 doi: 10.1371/journal.pone.0153573
Anitua E, de la Fuente M, Alcalde I, Sanchez C, Merayo-Lloves J, Muruzabal F. Development and optimization of freeze-dried eye drops derived from plasma rich in growth factors technology. Transl Vis Sci Technol. 2020;9:35.
pubmed: 32832240 pmcid: 7414653 doi: 10.1167/tvst.9.7.35
López-García JS, García-Lozano I, Rivas L, Viso-Garrote M, Raposo R, Méndez MT. Lyophilized autologous serum eyedrops: experimental and comparative study. Am J Ophthalmol. 2020;213:260–6.
pubmed: 32006480 doi: 10.1016/j.ajo.2020.01.027
Lemp MA, Crews LA, Bron AJ, Foulks GN, Sullivan BD. Distribution of aqueous-deficient and evaporative dry eye in a clinic-based patient cohort: a retrospective study. Cornea. 2012;31:472–8.
pubmed: 22378109 doi: 10.1097/ICO.0b013e318225415a
Loudin JD, Franke M, Hamilton DN, Doraiswamy A, Ackermann DM Contact lens for increasing tear production. US9764150B2 (Patent) 2014.
Kim M, Lee Y, Mehra D, Sabater AL, Galor A. Dry eye: why artificial tears are not always the answer. BMJ Open Ophthalmol. 2021;6:e000697.
pubmed: 33907713 pmcid: 8039249 doi: 10.1136/bmjophth-2020-000697
Jones L, Downie LE, Korb D, Benitez-Del-Castillo JM, Dana R, Deng SX, et al. TFOS DEWS II Management and Therapy Report. Ocul Surf. 2017;15:575–628.
pubmed: 28736343 doi: 10.1016/j.jtos.2017.05.006
Asim MH, Ijaz M, Rösch AC, Bernkop-Schnürch A. Thiolated cyclodextrins: New perspectives for old excipients. Coord Chem Rev. 2020;420:213433.
doi: 10.1016/j.ccr.2020.213433
Zhang W, Wang Y, Lee BT, Liu C, Wei G, Lu W. A novel nanoscale-dispersed eye ointment for the treatment of dry eye disease. Nanotechnology. 2014;25:125101.
pubmed: 24571862 doi: 10.1088/0957-4484/25/12/125101
Grassiri B, Zambito Y, Bernkop-Schnürch A. Strategies to prolong the residence time of drug delivery systems on ocular surface. Adv Colloid Interface Sci. 2021;288:102342.
pubmed: 33444845 doi: 10.1016/j.cis.2020.102342
Sahu DK, Pradhan D, Biswasroy P, Kar B, Ghosh G, Rath G. Recent trends in nanocarrier based approach in the management of dry eye disease. J Drug Deliv Sci Technol. 2021;66:102868.
doi: 10.1016/j.jddst.2021.102868
Yu Y, Chow DWY, Lau CML, Zhou G, Back W, Xu J, et al. A bioinspired synthetic soft hydrogel for the treatment of dry eye. Bioeng Transl Med. 2021;6:e10227.
pubmed: 34589602 pmcid: 8459603 doi: 10.1002/btm2.10227
Al-Kinani AA, Zidan G, Elsaid N, Seyfoddin A, Alani AWG, Alany RG. Ophthalmic gels: Past, present and future. Adv Drug Deliv Rev. 2018;126:113–26.
pubmed: 29288733 doi: 10.1016/j.addr.2017.12.017
Lin D, Lei L, Shi S, Li X. Stimulus-responsive hydrogel for ophthalmic drug delivery. Macromol Biosci. 2019;19:e1900001.
pubmed: 31026123 doi: 10.1002/mabi.201900001
Wang Q, Zuo Z, Cheung CKC, Leung SSY. Updates on thermosensitive hydrogel for nasal, ocular and cutaneous delivery. Int J Pharm. 2019;559:86–101.
pubmed: 30677480 doi: 10.1016/j.ijpharm.2019.01.030
Ow V, Loh XJJ. Recent developments of temperature-responsive polymers for ophthalmic applications. Polym Sci. 2022;60:1429.
doi: 10.1002/pol.20210907
Hendi A, Umair HM, Elsherif M, Alqattan B, Park S, Yetisen AK, et al. Healthcare applications of pH-sensitive hydrogel-based devices: a review. Int J Nanomed. 2020;15:3887–901.
doi: 10.2147/IJN.S245743
Rudko M, Urbaniak T, Musiał W. Recent developments in ion-sensitive systems for pharmaceutical applications. Polymers. 2021;13:1641.
pubmed: 34070206 pmcid: 8158499 doi: 10.3390/polym13101641
Li Q, Cao Y, Wang P. Recent advances in hydrogels for the diagnosis and treatment of dry eye disease. Gels. 2022;8:816.
pubmed: 36547340 pmcid: 9778550 doi: 10.3390/gels8120816
Chouhan G, Moakes RJA, Esmaeili M, Hill LJ, deCogan F, Hardwicke J, et al. A self-healing hydrogel eye drop for the sustained delivery of decorin to prevent corneal scarring. Biomaterials. 2019;210:41–50.
pubmed: 31055049 doi: 10.1016/j.biomaterials.2019.04.013
Abdi B, Mofidfar M, Hassanpour F, Kirbas Cilingir E, Kalajahi SK, Milani PH, et al. Therapeutic contact lenses for the treatment of corneal and ocular surface diseases: advances in extended and targeted drug delivery. Int J Pharm (2023). https://doi.org/10.1016/j.ijpharm.2023.122740 .
Thacker M, Singh V, Basu S, Singh S. Biomaterials for dry eye disease treatment: Current overview and future perspectives. Exp Eye Res. 2023;226:109339.
pubmed: 36470431 doi: 10.1016/j.exer.2022.109339
Roberts C, Stacey C. Transforming NHS Outpatient Care. 2020. https://www.locsu.co.uk/wp-content/uploads/2020/11/NHSEI-NOC-2020-25112020.pdf .
Forbes H, Sutton M, Edgar DF, Lawrenson J, Spencer AF, Fenerty C, et al. Impact of the Manchester glaucoma enhanced referral scheme on NHS costs. BMJ Open Ophthalmol. 2019;4:e000278.
pubmed: 31673631 pmcid: 6797377 doi: 10.1136/bmjophth-2019-000278
Gunn PJG, Marks JR, Konstantakopoulou E, Edgar DF, Lawrenson JG, Roberts SA, et al. Clinical effectiveness of the Manchester glaucoma enhanced referral scheme. Br J Ophthalmol. 2019;103:1066–71.
pubmed: 30309913 doi: 10.1136/bjophthalmol-2018-312385
Li JO, Liu H, Ting DSJ, Jeon S, Chan RVP, Kim JE, et al. Digital technology, tele-medicine and artificial intelligence in ophthalmology: A global perspective. Prog Retin Eye Res. 2021;82:100900.
pubmed: 32898686 doi: 10.1016/j.preteyeres.2020.100900
Liu H, Ying S, Kamat S, Tukel C, Serle J, Fallar R, et al. The role of telemedicine in glaucoma care triggered by the SARS-CoV-2 Pandemic: A qualitative study. Clin Ophthalmol. 2023;17:2251–66.
pubmed: 37575208 pmcid: 10422957 doi: 10.2147/OPTH.S418502
Sim DA, Mitry D, Alexander P, Mapani A, Goverdhan S, Aslam T, et al. The evolution of teleophthalmology programs in the United Kingdom: Beyond diabetic retinopathy screening. J Diabetes Sci Technol. 2016;10:308–17.
pubmed: 26830492 pmcid: 4773982 doi: 10.1177/1932296816629983
Ho CS, Avery AJ, Livingstone IAT, Ting DSJ. Virtual consultation for red eye. BMJ. 2021;373:n1490.
pubmed: 34172458 doi: 10.1136/bmj.n1490
Inomata T, Iwagami M, Nakamura M, Shiang T, Yoshimura Y, Fujimoto K, et al. Characteristics and risk factors associated with diagnosed and undiagnosed symptomatic dry eye using a smartphone application. JAMA Ophthalmol. 2020;138:58–68.
pubmed: 31774457 doi: 10.1001/jamaophthalmol.2019.4815
Choudhury I Going green-how pharmacies can protect the environment. 2022. https://www.inpharmacy.co.uk/2022/03/29/going-green-how-pharmacies-can-protect-environment .
Sherry B, Lee S, Ramos Cadena MLA, Laynor G, Patel SR, Simon MD, et al. How ophthalmologists can decarbonize eye care: a review of existing sustainability strategies and steps ophthalmologists can take. Ophthalmology. 2023;130:702–14.
pubmed: 36889466 doi: 10.1016/j.ophtha.2023.02.028
Tun S, Wellbery C, Teherani A. Faculty development and partnership with students to integrate sustainable healthcare into health professions education. Med Teach. 2020;42:1112–8.
pubmed: 32762586 doi: 10.1080/0142159X.2020.1796950
Centre for Sustainable Healthcare. The SusQI Education Project: Putting theory into practice. 2022. https://sustainablehealthcare.org.uk/sustainability-in-quality-improvement-education .
Sherman JD, McGain F, Lem M, Mortimer F, Jonas WB, MacNeill AJ. Net zero healthcare: a call for clinician action. BMJ. 2021;374:n1323.
pubmed: 34544732 pmcid: 8450779 doi: 10.1136/bmj.n1323
Bradshaw K. Tackling the climate crisis - recommended learning for healthcare staff. 2022. https://telblog.hee.nhs.uk/climate-crisis .
Campolo A, Crary M, Shannon P. A review of the containers available for multi-dose preservative-free eye drops. Biomed J Sci Tech Res. 2022;45:36035–44.
Unither Pharmaceuticals. Preservative-free multidose. 2022. https://www.unither-pharma.com/en/technologies/preservative-free-multidose-pfmd/ .
Daehn T, Schneider A, Knobloch J, Hellwinkel OJC, Spitzer MS, Kromer R. Contamination of multi dose eyedrops in the intra and perioperative context. Sci Rep. 2021;11:20364.
pubmed: 34645913 pmcid: 8514486 doi: 10.1038/s41598-021-99892-8
Tsegaw A, Tsegaw A, Abula T, Assefa Y. Bacterial contamination of multi-dose eye drops at Ophthalmology Department, University of Gondar, Northwest Ethiopia. Middle East Afr J Ophthalmol. 2017;24:81–86.
pubmed: 28936051 pmcid: 5598307 doi: 10.4103/meajo.MEAJO_308_16
Chantra S, Hathaisaard P, Grzybowski A, Ruamviboonsuk P. Microbial contamination of multiple-dose preservative-free hospital ophthalmic preparations in a tertiary care hospital. AOPR. 2022;2:100046.
pubmed: 37846225 pmcid: 10577817
Bertens CJF, Gijs M, van den Biggelaar F, Nuijts R. Topical drug delivery devices: A review. Exp Eye Res. 2018;168:149–60.
pubmed: 29352994 doi: 10.1016/j.exer.2018.01.010
Jehangir N, Bever G, Mahmood SMJ, Moshirfar M. Comprehensive review of the literature on existing punctal plugs for the management of dry eye disease. J Ophthalmol. 2016;2016:9312340.
pubmed: 27088009 pmcid: 4800096 doi: 10.1155/2016/9312340
mu-Drop. Micro eye drop manufacturing. 2023. https://www.mu-drop.nl .
Probst L, Frideres L, Cambier B, PwC Luxembourg & Sofia Solberg, Lidé S, PwC Sweden. Sustainable supply of raw materials. 2016. https://ec.europa.eu/docsroom/documents/16589/attachments/1/translations/en/renditions/native .
Drew VJ, Tseng C-L, Seghatchian J, Burnouf T. Reflections on dry eye syndrome treatment: therapeutic role of blood products. Front Med. 2018;5:33.
doi: 10.3389/fmed.2018.00033
Bernabei F, Roda M, Buzzi M, Pellegrini M, Giannaccare G, Versura P. Blood-based treatments for severe dry eye disease: the need of a consensus. J Clin Med. 2019;8:1478.
pubmed: 31533289 pmcid: 6780616 doi: 10.3390/jcm8091478
Bradley JC, Simoni J, Bradley RH, McCartney DL, Brown SM. Time- and temperature-dependent stability of growth factor peptides in human autologous serum eye drops. Cornea. 2009;28:200–5.
pubmed: 19158565 doi: 10.1097/ICO.0b013e318186321e
Fischer KR, Opitz A, Böeck M, Geerling G. Stability of serum eye drops after storage of 6 months. Cornea. 2012;31:1313–8.
pubmed: 22955119 doi: 10.1097/ICO.0b013e3182542085
Sahyoun J-Y, Cloutier M, Frenette M, Robert M-C. Long-term stability of epitheliotropic factors in frozen serum eye drops. Int J Pharm Compd. 2022;26:336–41.
pubmed: 35820139
Wandel D, Bernasconi L, Egger R. PP-008 Stability and sterility of autologous serum eye-drops after long term storage. Eur J Hosp Pharm. 2017;24:A205.
Tsubota K, Goto E, Fujita H, Ono M, Inoue H, Saito I, et al. Treatment of dry eye by autologous serum application in Sjögren’s syndrome. Br J Ophthalmol. 1999;83:390–5.
pubmed: 10434857 pmcid: 1723012 doi: 10.1136/bjo.83.4.390
Kapadia W, Qin N, Zhao P, Phan C-M, Haines L, Jones L, et al. Shear-thinning and temperature-dependent viscosity relationships of contemporary ocular lubricants. Transl Vis Sci Technol. 2022;11:1.
pubmed: 35234832 pmcid: 8899858 doi: 10.1167/tvst.11.3.1
Tung CI, Kottaiyan R, Koh S, Wang Q, Yoon G, Zavislan JM, et al. Noninvasive, objective, multimodal tear dynamics evaluation of 5 over-the-counter tear drops in a randomized controlled trial. Cornea. 2012;31:108–14.
pubmed: 22138585 doi: 10.1097/ICO.0b013e31821ea667
Arshinoff SA, Hofmann I, Nae H. Role of rheology in tears and artificial tears. J Cataract Refract Surg. 2021;47:655–61.
doi: 10.1097/j.jcrs.0000000000000508
Grover LM, Moakes R, Rauz S. Innovations in fluid-gel eye drops for treating disease of the eye: prospects for enhancing drug retention and reducing corneal scarring. Expert Rev Ophthalmol. 2022;17:175–81.
doi: 10.1080/17469899.2022.2101998
Simmons PA, Liu H, Carlisle-Wilcox C, Vehige JG. Efficacy and safety of two new formulations of artificial tears in subjects with dry eye disease: a 3-month, multicenter, active-controlled, randomized trial. Clin Ophthalmol. 2015;9:665–75.
pubmed: 25931807 pmcid: 4404880 doi: 10.2147/OPTH.S78184
Pisárčik M, Bakoš D, Čeppan M. Non-Newtonian properties of hyaluronic acid aqueous solution. Colloids Surf A Physicochem Eng Asp. 1995;97:197–202.
doi: 10.1016/0927-7757(95)03097-W
Shen Lee B, Kabat AG, Bacharach J, Karpecki P, Luchs J. Managing dry eye disease and facilitating realistic patient expectations: a review and appraisal of current therapies. Clin Ophthalmol. 2020;14:119–26.
pubmed: 32021076 pmcid: 6969676 doi: 10.2147/OPTH.S228838
White J “All levels of healthcare need to upskill to broaden the way that healthcare is delivered”. 2020. https://www.aop.org.uk/ot/professional-support/optical-organisations/2020/03/02/all-levels-of-healthcare-need-to-upskill-to-broaden-the-way-that-healthcare-is-delivered .
NHS Digital. Optometry: improving access to clinical information. 2022. https://digital.nhs.uk/services/podac/optometry .
Wickham L Eyecare Pathway Transformation. 2022. https://www.locsu.co.uk/wp-content/uploads/2022/10/Eyecare-Pathway-Transformation-Louisa-Wickham.pdf .
Cameron G, Göpfert A, Gardner T Going green: what do the public think about the NHS and climate change? 2021. https://www.health.org.uk/publications/long-reads/going-green-what-do-the-public-think-about-the-nhs-and-climate-change .

Auteurs

Samuel G Latham (SG)

Academic Unit of Ophthalmology, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
Birmingham and Midland Eye Centre, Sandwell and West Birmingham NHS Trust, Birmingham, UK.

Richard L Williams (RL)

School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Birmingham, UK.
Healthcare Technologies Institute, University of Birmingham, Birmingham, UK.

Liam M Grover (LM)

School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Birmingham, UK.
Healthcare Technologies Institute, University of Birmingham, Birmingham, UK.

Saaeha Rauz (S)

Academic Unit of Ophthalmology, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK. s.rauz@bham.ac.uk.
Birmingham and Midland Eye Centre, Sandwell and West Birmingham NHS Trust, Birmingham, UK. s.rauz@bham.ac.uk.

Classifications MeSH