Peptide sequencing based on host-guest interaction-assisted nanopore sensing.


Journal

Nature methods
ISSN: 1548-7105
Titre abrégé: Nat Methods
Pays: United States
ID NLM: 101215604

Informations de publication

Date de publication:
13 Nov 2023
Historique:
received: 22 03 2023
accepted: 20 10 2023
medline: 14 11 2023
pubmed: 14 11 2023
entrez: 13 11 2023
Statut: aheadofprint

Résumé

Direct protein sequencing technologies with improved sensitivity and throughput are still needed. Here, we propose an alternative method for peptide sequencing based on enzymatic cleavage and host-guest interaction-assisted nanopore sensing. We serendipitously discovered that the identity of any proteinogenic amino acid in a particular position of a phenylalanine-containing peptide could be determined via current blockage during translocation of the peptide through α-hemolysin nanopores in the presence of cucurbit[7]uril. Building upon this, we further present a proof-of-concept demonstration of peptide sequencing by sequentially cleaving off amino acids from C terminus of a peptide with carboxypeptidases, and then determining their identities and sequence with a peptide probe in nanopore. With future optimization, our results point to a different way of nanopore-based protein sequencing.

Identifiants

pubmed: 37957431
doi: 10.1038/s41592-023-02095-4
pii: 10.1038/s41592-023-02095-4
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer Nature America, Inc.

Références

Philip et al. Defective protein folding as a basis of human disease. Trends Biochem. Sci. 20, 456–459 (1995).
doi: 10.1016/S0968-0004(00)89100-8
Valastyan, J. S. & Lindquist, S. Mechanisms of protein-folding diseases at a glance. Dis. Model. Mech. 7, 9–14 (2014).
pubmed: 24396149 pmcid: 3882043 doi: 10.1242/dmm.013474
Edman, P. A method for the determination of amino acid sequence in peptides. Arch. Biochem 22, 475 (1949).
pubmed: 18134557
Steen, H. & Mann, M. The ABC’s (and XYZ’s) of peptide sequencing. Nat. Rev. Mol. Cell Biol. 5, 699–711 (2004).
pubmed: 15340378 doi: 10.1038/nrm1468
Domon, B. & Aebersold, R. Options and considerations when selecting a quantitative proteomics strategy. Nat. Biotechnol. 28, 710–721 (2010).
pubmed: 20622845 doi: 10.1038/nbt.1661
Xiao, Y., Vecchi, M. M. & Wen, D. Distinguishing between leucine and isoleucine by integrated LC–MS analysis using an orbitrap fusion mass spectrometer. Anal. Chem. 88, 10757–10766 (2016).
pubmed: 27704771 doi: 10.1021/acs.analchem.6b03409
Allen, G. Sequencing of Proteins and Peptides. vol. 9 161–234 (Elsevier, 2011).
Goodwin, S., McPherson, J. D. & McCombie, W. R. Coming of age: ten years of next-generation sequencing technologies. Nat. Rev. Genet. 17, 333–351 (2016).
pubmed: 27184599 pmcid: 10373632 doi: 10.1038/nrg.2016.49
Callahan, N., Tullman, J., Kelman, Z. & Marino, J. Strategies for development of a next-generation protein sequencing platform. Trends Biochem. Sci. 45, 76–89 (2020).
pubmed: 31676211 doi: 10.1016/j.tibs.2019.09.005
Alfaro, J. A. et al. The emerging landscape of single-molecule protein sequencing technologies. Nat. Meth. 18, 604–617 (2021).
doi: 10.1038/s41592-021-01143-1
Swaminathan, J. et al. Highly parallel single-molecule identification of proteins in zeptomole-scale mixtures. Nat. Biotechnol. 36, 1076–1082 (2018).
doi: 10.1038/nbt.4278
Reed, B. D. et al. Real-time dynamic single-molecule protein sequencing on an integrated semiconductor device. Science 378, 186–192 (2022).
pubmed: 36227977 doi: 10.1126/science.abo7651
Ginkel, J. V. et al. Single-molecule peptide fingerprinting. Proc. Natl Acad. Sci. USA 115, 3338–3343 (2018).
pubmed: 29531063 pmcid: 5879649 doi: 10.1073/pnas.1707207115
Zhao, Y. et al. Single-molecule spectroscopy of amino acids and peptides by recognition tunnelling. Nat. Nanotechnol. 9, 466–473 (2014).
pubmed: 24705512 pmcid: 4047173 doi: 10.1038/nnano.2014.54
Ohshiro, T. et al. Detection of post-translational modifications in single peptides using electron tunnelling currents. Nat. Nanotechnol. 9, 835–840 (2014).
pubmed: 25218325 doi: 10.1038/nnano.2014.193
Restrepo-Pérez, L., Joo, C. & Dekker, C. Paving the way to single-molecule protein sequencing. Nat. Nanotechnol. 13, 786–796 (2018).
pubmed: 30190617 doi: 10.1038/s41565-018-0236-6
Hu, Z. L., Huo, M. Z., Ying, Y. L. & Long, Y. T. Biological nanopore approach for single-molecule protein sequencing. Angew. Chem. Int. Ed. 60, 14738–14749 (2021).
doi: 10.1002/anie.202013462
Asandei, A. et al. Nanopore‐based protein sequencing using biopores: Current achievements and open challenges. Small Methods https://doi.org/10.1002/smtd.201900595 (2020).
Wilson, J., Sloman, L., He, Z. & Aksimentiev, A. Graphene nanopores for protein sequencing. Adv. Funct. Mater. 26, 4830–4838 (2016).
pubmed: 27746710 pmcid: 5063307 doi: 10.1002/adfm.201601272
Clarke, J. et al. Continuous base identification for single-molecule nanopore DNA sequencing. Nat. Nanotechnol. 4, 265–270 (2009).
pubmed: 19350039 doi: 10.1038/nnano.2009.12
Cherf, G. M. et al. Automated forward and reverse ratcheting of DNA in a nanopore at 5-Å precision. Nat. Biotechnol. 30, 344–348 (2012).
pubmed: 22334048 pmcid: 3408072 doi: 10.1038/nbt.2147
Manrao, E. A. et al. Reading DNA at single-nucleotide resolution with a mutant MspA nanopore and phi29 DNA polymerase. Nat. Biotechnol. 30, 349–353 (2012).
pubmed: 22446694 pmcid: 3757088 doi: 10.1038/nbt.2171
Laszlo, A. H. et al. Decoding long nanopore sequencing reads of natural DNA. Nat. Biotechnol. 32, 829–833 (2014).
pubmed: 24964173 pmcid: 4126851 doi: 10.1038/nbt.2950
Sutherland, T. C. et al. Structure of peptides investigated by nanopore analysis. Nano Lett. 4, 1273–1277 (2004).
doi: 10.1021/nl049413e
Stefureac, R., Long, Y. T., Kraatz, H. B., Howard, P. & Lee, J. S. Transport of α-helical peptides through α-hemolysin and aerolysin pores. Biochemistry 45, 9172–9179 (2006).
pubmed: 16866363 doi: 10.1021/bi0604835
Zhao, Q., Jayawardhana, D. A., Wang, D. & Guan, X. Study of peptide transport through engineered protein channels. J. Phys. Chem. B 113, 3572–3578 (2009).
pubmed: 19231820 doi: 10.1021/jp809842g
Kennedy, E., Dong, Z., Tennant, C. & Timp, G. Reading the primary structure of a protein with 0.07 nm3 resolution using a subnanometre-diameter pore. Nat. Nanotechnol. 11, 968–976 (2016).
pubmed: 27454878 doi: 10.1038/nnano.2016.120
Oukhaled, G. et al. Unfolding of proteins and long transient conformations detected by single nanopore recording. Phys. Rev. Lett. 98, 158101 (2007).
pubmed: 17501386 doi: 10.1103/PhysRevLett.98.158101
Payet, L. et al. Thermal unfolding of proteins probed at the single molecule level using nanopores. Anal. Chem. 84, 4071–4076 (2012).
pubmed: 22486207 doi: 10.1021/ac300129e
Rodriguez-Larrea, D. & Bayley, H. Multistep protein unfolding during nanopore translocation. Nat. Nanotechnol. 8, 288–295 (2013).
pubmed: 23474543 pmcid: 4830145 doi: 10.1038/nnano.2013.22
Nivala, J., Marks, D. B. & Akeson, M. Unfoldase-mediated protein translocation through an α-hemolysin nanopore. Nat. Biotechnol. 31, 247–250 (2013).
pubmed: 23376966 pmcid: 3772521 doi: 10.1038/nbt.2503
Zhang, S. et al. Bottom-up fabrication of a proteasome-nanopore that unravels and processes single proteins. Nat. Chem. 13, 1192–1199 (2021).
pubmed: 34795436 pmcid: 7612055 doi: 10.1038/s41557-021-00824-w
Huang, G., Willems, K., Soskine, M., Wloka, C. & Maglia, G. Electro-osmotic capture and ionic discrimination of peptide and protein biomarkers with FraC nanopores. Nat. Commun. 8, 935 (2017).
pubmed: 29038539 pmcid: 5715100 doi: 10.1038/s41467-017-01006-4
Afshar Bakshloo, M. et al. Nanopore-based protein identification. J. Am. Chem. Soc. 144, 2716–2725 (2022).
pubmed: 35120294 doi: 10.1021/jacs.1c11758
Piguet, F. et al. Identification of single amino acid differences in uniformly charged homopolymeric peptides with aerolysin nanopore. Nat. Commun. 9, 966 (2018).
pubmed: 29511176 pmcid: 5840376 doi: 10.1038/s41467-018-03418-2
Ji, Z., Kang, X., Wang, S. & Guo, P. Nano-channel of viral DNA packaging motor as single pore to differentiate peptides with single amino acid difference. Biomaterials 182, 227–233 (2018).
pubmed: 30138785 pmcid: 6309972 doi: 10.1016/j.biomaterials.2018.08.005
Huang, G., Voet, A. & Maglia, G. FraC nanopores with adjustable diameter identify the mass of opposite-charge peptides with 44 dalton resolution. Nat. Commun. 10, 835 (2019).
pubmed: 30783102 pmcid: 6381162 doi: 10.1038/s41467-019-08761-6
Li, S., Cao, C., Yang, J. & Long, Y. T. J. C. Detection of peptides with different charges and lengths by using the aerolysin nanopore. ChemElectroChem 6, 126–129 (2019).
doi: 10.1002/celc.201800288
Rosen, C. B., Rodriguez-Larrea, D. & Bayley, H. Single-molecule site-specific detection of protein phosphorylation with a nanopore. Nat. Biotechnol. 32, 179–181 (2014).
pubmed: 24441471 pmcid: 4391620 doi: 10.1038/nbt.2799
Ensslen, T., Sarthak, K., Aksimentiev, A. & Behrends, J. C. Resolving isomeric posttranslational modifications using a biological nanopore as a sensor of molecular shape. J. Am. Chem. Soc. 144, 16060–16068 (2022).
pubmed: 36007197 doi: 10.1021/jacs.2c06211
Restrepo-Pérez, L., Wong, C. H., Maglia, G., Dekker, C. & Joo, C. Label-free detection of post-translational modifications with a nanopore. Nano Lett. 19, 7957–7964 (2019).
pubmed: 31602979 pmcid: 6856961 doi: 10.1021/acs.nanolett.9b03134
Ouldali, H. et al. Electrical recognition of the twenty proteinogenic amino acids using an aerolysin nanopore. Nat. Biotechnol. 38, 176–181 (2020).
pubmed: 31844293 doi: 10.1038/s41587-019-0345-2
Brinkerhoff, H., Kang, A. S. W., Liu, J., Aksimentiev, A. & Dekker, C. Multiple rereads of single proteins at single-amino acid resolution using nanopores. Science 374, 1509–1513 (2021).
pubmed: 34735217 pmcid: 8811723 doi: 10.1126/science.abl4381
Yan, S. et al. Single molecule ratcheting motion of peptides in a Mycobacterium smegmatis porin A (MspA) manopore. Nano Lett. 21, 6703–6710 (2021).
pubmed: 34319744 doi: 10.1021/acs.nanolett.1c02371
Chen, Z. et al. Controlled movement of ssDNA conjugated peptide through Mycobacterium smegmatis porin A (MspA) nanopore by a helicase motor for peptide sequencing application. Chem. Sci. 12, 15750–15756 (2021).
pubmed: 35003607 pmcid: 8654031 doi: 10.1039/D1SC04342K
Liu, L. et al. A dual-response DNA probe for simultaneously monitoring enzymatic activity and environmental pH using a nanopore. Angew. Chem. Int. Ed. 58, 14929–14934 (2019).
doi: 10.1002/anie.201907816
Sheng, Y., Zhou, K., Liu, L. & Wu, H. C. A nanopore sensing assay resolves cascade reactions in a multienzyme system. Angew. Chem. Int. Ed. 61, e202200866 (2022).
doi: 10.1002/anie.202200866
Butler, T. Z., Pavlenok, M., Derrington, I. M., Niederweis, M. & Gundlach, J. H. Single-molecule DNA detection with an engineered MspA protein nanopore. Proc. Natl Acad. Sci. USA 105, 20647–20652 (2008).
pubmed: 19098105 pmcid: 2634888 doi: 10.1073/pnas.0807514106
Van der Verren, S. E. et al. A dual-constriction biological nanopore resolves homonucleotide sequences with high fidelity. Nat. Biotechnol. 38, 1415–1420 (2020).
pubmed: 32632300 pmcid: 7610451 doi: 10.1038/s41587-020-0570-8
Stoddart, D., Heron, A. J., Mikhailova, E., Maglia, G. & Bayley, H. Single-nucleotide discrimination in immobilized DNA oligonucleotides with a biological nanopore. Proc. Natl Acad. Sci. USA 106, 7702–7707 (2009).
pubmed: 19380741 pmcid: 2683137 doi: 10.1073/pnas.0901054106
Stoddart, D., Maglia, G., Mikhailova, E., Heron, A. J. & Bayley, H. Multiple base-recognition sites in a biological nanopore: Two heads are better than one. Angew. Chem. Int. Ed. 49, 556–559 (2010).
doi: 10.1002/anie.200905483
Schibel, A. E. P. et al. Nanopore detection of 8-Oxo-7,8-dihydro-2′-deoxyguanosine in immobilized single-stranded DNA via adduct formation to the DNA damage site. J. Am. Chem. Soc. 132, 17992–17995 (2010).
pubmed: 21138270 pmcid: 3021242 doi: 10.1021/ja109501x
Li, T., Liu, L., Li, Y., Xie, J. & Wu, H.-C. A universal strategy for aptamer-based nanopore sensing through host–guest interactions inside α-hemolysin. Angew. Chem. Int. Ed. 54, 7568–7571 (2015).
doi: 10.1002/anie.201502047
Liu, L. et al. Simultaneous quantification of multiple cancer biomarkers in blood samples through DNA-assisted nanopore sensing. Angew. Chem. Int. Ed. 57, 11882–11887 (2018).
doi: 10.1002/anie.201803324
Perkins, S. J. Protein volumes and hydration effects. The calculations of partial specific volumes, neutron scattering matchpoints and 280-nm absorption coefficients for proteins and glycoproteins from amino acid sequences. Eur. J. Biochem. 157, 169–180 (1986).
pubmed: 3709531 doi: 10.1111/j.1432-1033.1986.tb09653.x
Wilson, J., Sarthak, K., Si, W., Gao, L. & Aksimentiev, A. Rapid and accurate determination of nanopore ionic current using a steric exclusion model. ACS Sens. 4, 634–644 (2019).
pubmed: 30821441 pmcid: 6489136 doi: 10.1021/acssensors.8b01375

Auteurs

Yun Zhang (Y)

Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
University of Chinese Academy of Sciences, Beijing, China.

Yakun Yi (Y)

Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
University of Chinese Academy of Sciences, Beijing, China.

Ziyi Li (Z)

Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
University of Chinese Academy of Sciences, Beijing, China.

Ke Zhou (K)

Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.

Lei Liu (L)

Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China. leiliu@ihep.ac.cn.

Hai-Chen Wu (HC)

Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China. haichenwu@iccas.ac.cn.
University of Chinese Academy of Sciences, Beijing, China. haichenwu@iccas.ac.cn.

Classifications MeSH