Peptide sequencing based on host-guest interaction-assisted nanopore sensing.
Journal
Nature methods
ISSN: 1548-7105
Titre abrégé: Nat Methods
Pays: United States
ID NLM: 101215604
Informations de publication
Date de publication:
13 Nov 2023
13 Nov 2023
Historique:
received:
22
03
2023
accepted:
20
10
2023
medline:
14
11
2023
pubmed:
14
11
2023
entrez:
13
11
2023
Statut:
aheadofprint
Résumé
Direct protein sequencing technologies with improved sensitivity and throughput are still needed. Here, we propose an alternative method for peptide sequencing based on enzymatic cleavage and host-guest interaction-assisted nanopore sensing. We serendipitously discovered that the identity of any proteinogenic amino acid in a particular position of a phenylalanine-containing peptide could be determined via current blockage during translocation of the peptide through α-hemolysin nanopores in the presence of cucurbit[7]uril. Building upon this, we further present a proof-of-concept demonstration of peptide sequencing by sequentially cleaving off amino acids from C terminus of a peptide with carboxypeptidases, and then determining their identities and sequence with a peptide probe in nanopore. With future optimization, our results point to a different way of nanopore-based protein sequencing.
Identifiants
pubmed: 37957431
doi: 10.1038/s41592-023-02095-4
pii: 10.1038/s41592-023-02095-4
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Nature America, Inc.
Références
Philip et al. Defective protein folding as a basis of human disease. Trends Biochem. Sci. 20, 456–459 (1995).
doi: 10.1016/S0968-0004(00)89100-8
Valastyan, J. S. & Lindquist, S. Mechanisms of protein-folding diseases at a glance. Dis. Model. Mech. 7, 9–14 (2014).
pubmed: 24396149
pmcid: 3882043
doi: 10.1242/dmm.013474
Edman, P. A method for the determination of amino acid sequence in peptides. Arch. Biochem 22, 475 (1949).
pubmed: 18134557
Steen, H. & Mann, M. The ABC’s (and XYZ’s) of peptide sequencing. Nat. Rev. Mol. Cell Biol. 5, 699–711 (2004).
pubmed: 15340378
doi: 10.1038/nrm1468
Domon, B. & Aebersold, R. Options and considerations when selecting a quantitative proteomics strategy. Nat. Biotechnol. 28, 710–721 (2010).
pubmed: 20622845
doi: 10.1038/nbt.1661
Xiao, Y., Vecchi, M. M. & Wen, D. Distinguishing between leucine and isoleucine by integrated LC–MS analysis using an orbitrap fusion mass spectrometer. Anal. Chem. 88, 10757–10766 (2016).
pubmed: 27704771
doi: 10.1021/acs.analchem.6b03409
Allen, G. Sequencing of Proteins and Peptides. vol. 9 161–234 (Elsevier, 2011).
Goodwin, S., McPherson, J. D. & McCombie, W. R. Coming of age: ten years of next-generation sequencing technologies. Nat. Rev. Genet. 17, 333–351 (2016).
pubmed: 27184599
pmcid: 10373632
doi: 10.1038/nrg.2016.49
Callahan, N., Tullman, J., Kelman, Z. & Marino, J. Strategies for development of a next-generation protein sequencing platform. Trends Biochem. Sci. 45, 76–89 (2020).
pubmed: 31676211
doi: 10.1016/j.tibs.2019.09.005
Alfaro, J. A. et al. The emerging landscape of single-molecule protein sequencing technologies. Nat. Meth. 18, 604–617 (2021).
doi: 10.1038/s41592-021-01143-1
Swaminathan, J. et al. Highly parallel single-molecule identification of proteins in zeptomole-scale mixtures. Nat. Biotechnol. 36, 1076–1082 (2018).
doi: 10.1038/nbt.4278
Reed, B. D. et al. Real-time dynamic single-molecule protein sequencing on an integrated semiconductor device. Science 378, 186–192 (2022).
pubmed: 36227977
doi: 10.1126/science.abo7651
Ginkel, J. V. et al. Single-molecule peptide fingerprinting. Proc. Natl Acad. Sci. USA 115, 3338–3343 (2018).
pubmed: 29531063
pmcid: 5879649
doi: 10.1073/pnas.1707207115
Zhao, Y. et al. Single-molecule spectroscopy of amino acids and peptides by recognition tunnelling. Nat. Nanotechnol. 9, 466–473 (2014).
pubmed: 24705512
pmcid: 4047173
doi: 10.1038/nnano.2014.54
Ohshiro, T. et al. Detection of post-translational modifications in single peptides using electron tunnelling currents. Nat. Nanotechnol. 9, 835–840 (2014).
pubmed: 25218325
doi: 10.1038/nnano.2014.193
Restrepo-Pérez, L., Joo, C. & Dekker, C. Paving the way to single-molecule protein sequencing. Nat. Nanotechnol. 13, 786–796 (2018).
pubmed: 30190617
doi: 10.1038/s41565-018-0236-6
Hu, Z. L., Huo, M. Z., Ying, Y. L. & Long, Y. T. Biological nanopore approach for single-molecule protein sequencing. Angew. Chem. Int. Ed. 60, 14738–14749 (2021).
doi: 10.1002/anie.202013462
Asandei, A. et al. Nanopore‐based protein sequencing using biopores: Current achievements and open challenges. Small Methods https://doi.org/10.1002/smtd.201900595 (2020).
Wilson, J., Sloman, L., He, Z. & Aksimentiev, A. Graphene nanopores for protein sequencing. Adv. Funct. Mater. 26, 4830–4838 (2016).
pubmed: 27746710
pmcid: 5063307
doi: 10.1002/adfm.201601272
Clarke, J. et al. Continuous base identification for single-molecule nanopore DNA sequencing. Nat. Nanotechnol. 4, 265–270 (2009).
pubmed: 19350039
doi: 10.1038/nnano.2009.12
Cherf, G. M. et al. Automated forward and reverse ratcheting of DNA in a nanopore at 5-Å precision. Nat. Biotechnol. 30, 344–348 (2012).
pubmed: 22334048
pmcid: 3408072
doi: 10.1038/nbt.2147
Manrao, E. A. et al. Reading DNA at single-nucleotide resolution with a mutant MspA nanopore and phi29 DNA polymerase. Nat. Biotechnol. 30, 349–353 (2012).
pubmed: 22446694
pmcid: 3757088
doi: 10.1038/nbt.2171
Laszlo, A. H. et al. Decoding long nanopore sequencing reads of natural DNA. Nat. Biotechnol. 32, 829–833 (2014).
pubmed: 24964173
pmcid: 4126851
doi: 10.1038/nbt.2950
Sutherland, T. C. et al. Structure of peptides investigated by nanopore analysis. Nano Lett. 4, 1273–1277 (2004).
doi: 10.1021/nl049413e
Stefureac, R., Long, Y. T., Kraatz, H. B., Howard, P. & Lee, J. S. Transport of α-helical peptides through α-hemolysin and aerolysin pores. Biochemistry 45, 9172–9179 (2006).
pubmed: 16866363
doi: 10.1021/bi0604835
Zhao, Q., Jayawardhana, D. A., Wang, D. & Guan, X. Study of peptide transport through engineered protein channels. J. Phys. Chem. B 113, 3572–3578 (2009).
pubmed: 19231820
doi: 10.1021/jp809842g
Kennedy, E., Dong, Z., Tennant, C. & Timp, G. Reading the primary structure of a protein with 0.07 nm3 resolution using a subnanometre-diameter pore. Nat. Nanotechnol. 11, 968–976 (2016).
pubmed: 27454878
doi: 10.1038/nnano.2016.120
Oukhaled, G. et al. Unfolding of proteins and long transient conformations detected by single nanopore recording. Phys. Rev. Lett. 98, 158101 (2007).
pubmed: 17501386
doi: 10.1103/PhysRevLett.98.158101
Payet, L. et al. Thermal unfolding of proteins probed at the single molecule level using nanopores. Anal. Chem. 84, 4071–4076 (2012).
pubmed: 22486207
doi: 10.1021/ac300129e
Rodriguez-Larrea, D. & Bayley, H. Multistep protein unfolding during nanopore translocation. Nat. Nanotechnol. 8, 288–295 (2013).
pubmed: 23474543
pmcid: 4830145
doi: 10.1038/nnano.2013.22
Nivala, J., Marks, D. B. & Akeson, M. Unfoldase-mediated protein translocation through an α-hemolysin nanopore. Nat. Biotechnol. 31, 247–250 (2013).
pubmed: 23376966
pmcid: 3772521
doi: 10.1038/nbt.2503
Zhang, S. et al. Bottom-up fabrication of a proteasome-nanopore that unravels and processes single proteins. Nat. Chem. 13, 1192–1199 (2021).
pubmed: 34795436
pmcid: 7612055
doi: 10.1038/s41557-021-00824-w
Huang, G., Willems, K., Soskine, M., Wloka, C. & Maglia, G. Electro-osmotic capture and ionic discrimination of peptide and protein biomarkers with FraC nanopores. Nat. Commun. 8, 935 (2017).
pubmed: 29038539
pmcid: 5715100
doi: 10.1038/s41467-017-01006-4
Afshar Bakshloo, M. et al. Nanopore-based protein identification. J. Am. Chem. Soc. 144, 2716–2725 (2022).
pubmed: 35120294
doi: 10.1021/jacs.1c11758
Piguet, F. et al. Identification of single amino acid differences in uniformly charged homopolymeric peptides with aerolysin nanopore. Nat. Commun. 9, 966 (2018).
pubmed: 29511176
pmcid: 5840376
doi: 10.1038/s41467-018-03418-2
Ji, Z., Kang, X., Wang, S. & Guo, P. Nano-channel of viral DNA packaging motor as single pore to differentiate peptides with single amino acid difference. Biomaterials 182, 227–233 (2018).
pubmed: 30138785
pmcid: 6309972
doi: 10.1016/j.biomaterials.2018.08.005
Huang, G., Voet, A. & Maglia, G. FraC nanopores with adjustable diameter identify the mass of opposite-charge peptides with 44 dalton resolution. Nat. Commun. 10, 835 (2019).
pubmed: 30783102
pmcid: 6381162
doi: 10.1038/s41467-019-08761-6
Li, S., Cao, C., Yang, J. & Long, Y. T. J. C. Detection of peptides with different charges and lengths by using the aerolysin nanopore. ChemElectroChem 6, 126–129 (2019).
doi: 10.1002/celc.201800288
Rosen, C. B., Rodriguez-Larrea, D. & Bayley, H. Single-molecule site-specific detection of protein phosphorylation with a nanopore. Nat. Biotechnol. 32, 179–181 (2014).
pubmed: 24441471
pmcid: 4391620
doi: 10.1038/nbt.2799
Ensslen, T., Sarthak, K., Aksimentiev, A. & Behrends, J. C. Resolving isomeric posttranslational modifications using a biological nanopore as a sensor of molecular shape. J. Am. Chem. Soc. 144, 16060–16068 (2022).
pubmed: 36007197
doi: 10.1021/jacs.2c06211
Restrepo-Pérez, L., Wong, C. H., Maglia, G., Dekker, C. & Joo, C. Label-free detection of post-translational modifications with a nanopore. Nano Lett. 19, 7957–7964 (2019).
pubmed: 31602979
pmcid: 6856961
doi: 10.1021/acs.nanolett.9b03134
Ouldali, H. et al. Electrical recognition of the twenty proteinogenic amino acids using an aerolysin nanopore. Nat. Biotechnol. 38, 176–181 (2020).
pubmed: 31844293
doi: 10.1038/s41587-019-0345-2
Brinkerhoff, H., Kang, A. S. W., Liu, J., Aksimentiev, A. & Dekker, C. Multiple rereads of single proteins at single-amino acid resolution using nanopores. Science 374, 1509–1513 (2021).
pubmed: 34735217
pmcid: 8811723
doi: 10.1126/science.abl4381
Yan, S. et al. Single molecule ratcheting motion of peptides in a Mycobacterium smegmatis porin A (MspA) manopore. Nano Lett. 21, 6703–6710 (2021).
pubmed: 34319744
doi: 10.1021/acs.nanolett.1c02371
Chen, Z. et al. Controlled movement of ssDNA conjugated peptide through Mycobacterium smegmatis porin A (MspA) nanopore by a helicase motor for peptide sequencing application. Chem. Sci. 12, 15750–15756 (2021).
pubmed: 35003607
pmcid: 8654031
doi: 10.1039/D1SC04342K
Liu, L. et al. A dual-response DNA probe for simultaneously monitoring enzymatic activity and environmental pH using a nanopore. Angew. Chem. Int. Ed. 58, 14929–14934 (2019).
doi: 10.1002/anie.201907816
Sheng, Y., Zhou, K., Liu, L. & Wu, H. C. A nanopore sensing assay resolves cascade reactions in a multienzyme system. Angew. Chem. Int. Ed. 61, e202200866 (2022).
doi: 10.1002/anie.202200866
Butler, T. Z., Pavlenok, M., Derrington, I. M., Niederweis, M. & Gundlach, J. H. Single-molecule DNA detection with an engineered MspA protein nanopore. Proc. Natl Acad. Sci. USA 105, 20647–20652 (2008).
pubmed: 19098105
pmcid: 2634888
doi: 10.1073/pnas.0807514106
Van der Verren, S. E. et al. A dual-constriction biological nanopore resolves homonucleotide sequences with high fidelity. Nat. Biotechnol. 38, 1415–1420 (2020).
pubmed: 32632300
pmcid: 7610451
doi: 10.1038/s41587-020-0570-8
Stoddart, D., Heron, A. J., Mikhailova, E., Maglia, G. & Bayley, H. Single-nucleotide discrimination in immobilized DNA oligonucleotides with a biological nanopore. Proc. Natl Acad. Sci. USA 106, 7702–7707 (2009).
pubmed: 19380741
pmcid: 2683137
doi: 10.1073/pnas.0901054106
Stoddart, D., Maglia, G., Mikhailova, E., Heron, A. J. & Bayley, H. Multiple base-recognition sites in a biological nanopore: Two heads are better than one. Angew. Chem. Int. Ed. 49, 556–559 (2010).
doi: 10.1002/anie.200905483
Schibel, A. E. P. et al. Nanopore detection of 8-Oxo-7,8-dihydro-2′-deoxyguanosine in immobilized single-stranded DNA via adduct formation to the DNA damage site. J. Am. Chem. Soc. 132, 17992–17995 (2010).
pubmed: 21138270
pmcid: 3021242
doi: 10.1021/ja109501x
Li, T., Liu, L., Li, Y., Xie, J. & Wu, H.-C. A universal strategy for aptamer-based nanopore sensing through host–guest interactions inside α-hemolysin. Angew. Chem. Int. Ed. 54, 7568–7571 (2015).
doi: 10.1002/anie.201502047
Liu, L. et al. Simultaneous quantification of multiple cancer biomarkers in blood samples through DNA-assisted nanopore sensing. Angew. Chem. Int. Ed. 57, 11882–11887 (2018).
doi: 10.1002/anie.201803324
Perkins, S. J. Protein volumes and hydration effects. The calculations of partial specific volumes, neutron scattering matchpoints and 280-nm absorption coefficients for proteins and glycoproteins from amino acid sequences. Eur. J. Biochem. 157, 169–180 (1986).
pubmed: 3709531
doi: 10.1111/j.1432-1033.1986.tb09653.x
Wilson, J., Sarthak, K., Si, W., Gao, L. & Aksimentiev, A. Rapid and accurate determination of nanopore ionic current using a steric exclusion model. ACS Sens. 4, 634–644 (2019).
pubmed: 30821441
pmcid: 6489136
doi: 10.1021/acssensors.8b01375