The antimicrobial effect and mechanism of the Artemisia argyi essential oil against bacteria and fungus.
Antimicrobial activity
Artemisia argyi
Chemical analysis
Essential oils
GC–MS
Journal
Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology]
ISSN: 1678-4405
Titre abrégé: Braz J Microbiol
Pays: Brazil
ID NLM: 101095924
Informations de publication
Date de publication:
13 Nov 2023
13 Nov 2023
Historique:
received:
13
04
2023
accepted:
27
10
2023
medline:
14
11
2023
pubmed:
14
11
2023
entrez:
13
11
2023
Statut:
aheadofprint
Résumé
Artemisia argyi is a traditional Chinese herb with antibacterial, antifungal, and antitumor activities. The essential oil of Artemisia argyi was extracted using the steam distillation method in this study. The chemical composition of the essential oil was analyzed using the gas chromatography-mass spectrometry method. Agar disc diffusion and double-broth dilution assays were used to detect the antimicrobial activity of the essential oil. Subsequently, the antimicrobial mechanisms were explored through cytomembrane permeability assay and electron microscopy. Based on gas chromatography-mass spectrometry analysis, 25 compounds were detected, including 13.76% cineole, 6.77% terpinen-4-ol, 6.68% 3-dione, 1,7,7-trimethyl-, 4.07% 3-cyclohexen-1-ol, 4-methyl-1-(1-methylethyl)-acetate, 3.58% 1-isopropyl-2-methylbenzene, and 1.58% g-terpinene. The essential oil was tested for antimicrobial activity, and the IC
Identifiants
pubmed: 37957442
doi: 10.1007/s42770-023-01172-2
pii: 10.1007/s42770-023-01172-2
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Anhui Scientific Research and Innovation Team of Quality Evaluation and Improvement of Traditional Chinese Medicine
ID : 2022AH010090
Organisme : Anhui Provincial Department of Education
ID : KJ2019A0628
Organisme : Anhui Provincial Department of Education
ID : KJ2019A0617
Organisme : Anhui Provincial Department of Education
ID : KJ2019A0626
Organisme : Anhui Provincial Department of Education
ID : KJ2021A0957
Organisme : Anhui Provincial Department of Education
ID : KJ2020A0634
Organisme : Provincial Foundation for Excellent Young Talents of Colleges and Universities of Anhui Province
ID : GXYQ2020127
Organisme : Postdoctoral Science Foundation of West Anhui University
ID : WXBSH2021001
Organisme : The High-level Talent Project of West Anhui University
ID : WGKQ2021021
Informations de copyright
© 2023. The Author(s) under exclusive licence to Sociedade Brasileira de Microbiologia.
Références
Song C, Li Y-Q, Yan Y-M, Hu M, Zhang Q-Z (2014) A new norneolignan from the leaves of the traditional Chinese medicine Artemisia argyi. Chem Nat Compd 50(3):414–416. https://doi.org/10.1007/s10600-014-0973-1
doi: 10.1007/s10600-014-0973-1
Hui H, Qingan L, Shenxi C, Yuancai L, Huameng G, Bukun J (2020) Preparation of the essential oil from Artemisia argyi grown in Qichun, China and its application in antibacterial effection. E3S Web Conf 189:02016 (4 pp.)- (4 pp.). https://doi.org/10.1051/e3sconf/202018902016
Chen P, Bai Q, Wu Y, Zeng Q, Song X, Guo Y et al (2021) The essential oil of Artemisia argyi H.Lev. and Vaniot attenuates NLRP3 inflammasome activation in THP-1 cells. Front Pharmacol 12. https://doi.org/10.3389/fphar.2021.712907
Song X, Wen X, He J, Zhao H, Li S, Wang M (2019) Phytochemical components and biological activities of Artemisia argyi. J Funct Foods 52:648–662. https://doi.org/10.1016/j.jff.2018.11.029
doi: 10.1016/j.jff.2018.11.029
Narayanan M, Chanthini A, Devarajan N, Saravanan M, Sabour A, Alshiekheid M et al (2023) Antibacterial and antioxidant efficacy of ethyl acetate extract of Cymodocea serrulata and assess the major bioactive components in the extract using GC-MS analysis. Process Biochem 124:24–32. https://doi.org/10.1016/j.procbio.2022.10.036
doi: 10.1016/j.procbio.2022.10.036
Giovannuzzi S, De Luca V, Capasso C, Supuran CT (2023) Inhibition studies with simple and complex (in)organic anions of the gamma-carbonic anhydrase from Mammaliicoccus (Staphylococcus) sciuri, MscCA gamma. J Enzyme Inhib Med Chem 38(1). https://doi.org/10.1080/14756366.2023.2173748
Shankaran D, Singh A, Dawa S, Arumugam P, Gandotra S, Rao V (2023) The antidepressant sertraline provides a novel host directed therapy module for augmenting TB therapy. eLife 12. https://doi.org/10.7554/eLife.64834
Hou M-Z, Chen L-L, Chang C, Zan J-F, Du S-M (2021) Pharmacokinetic and tissue distribution study of eight volatile constituents in rats orally administrated with the essential oil of Artemisiae argyi Folium by GC-MS/MS. J Chromatogr B-Anal Technol Biomed Life Sci 1181. https://doi.org/10.1016/j.jchromb.2021.122904
Hain E, Adejumo H, Anger B, Orenstein J, Blaney L (2021) Advances in antimicrobial activity analysis of fluoroquinolone, macrolide, sulfonamide, and tetracycline antibiotics for environmental applications through improved bacteria selection. J Hazard Mater 415. https://doi.org/10.1016/j.jhazmat.2021.125686
Ono T, Usami A, Nakaya S, Maeloa K, Yonejima Y, Toyoda M et al (2015) Chemical compositions and aroma evaluation of volatile oil from the industrial cultivation medium of Enterococcus faecalis. J Oleo Sci 64(10):1125–1133. https://doi.org/10.5650/jos.ess15098
doi: 10.5650/jos.ess15098
pubmed: 26369592
Negre VL, Colin-Gorski AM, Magnier S, Maisonneuve L, Aujard Y, Bingen E et al (2004) Culture-negative neonatal meningitis and endocarditis caused by Streptococcus agalactiae. J Clin Microbiol 42(10):4889–4890. https://doi.org/10.1128/jcm.42.10.4889-4890.2004
doi: 10.1128/jcm.42.10.4889-4890.2004
pubmed: 15472373
pmcid: 522358
Pearson MM (2019) Culture methods for Proteus mirabilis. Methods Mol Biol (Clifton, NJ) 2021:5–13. https://doi.org/10.1007/978-1-4939-9601-8_2
doi: 10.1007/978-1-4939-9601-8_2
Li Y, Ma L, Duan S, Li M, Chen J (2020) Development of a loop-mediated isothermal amplification assay for rapid detection of Streptococcus pneumoniae isolates in clinical sputum samples. Indian J Pharm Sci 82:64–68. https://doi.org/10.36468/pharmaceutical-sciences.spl.13
doi: 10.36468/pharmaceutical-sciences.spl.13
Yucesoy M, Oztek AO, Marol S (2005) Comparison of three differential media for the presumptive identification of yeasts. Clin Microbiol Infect 11(3):245–247. https://doi.org/10.1111/j.1469-0691.2004.01058.x
doi: 10.1111/j.1469-0691.2004.01058.x
pubmed: 15715727
Chen N-D, You T, Li J, Bai L-T, Hao J-W, Xu X-Y (2016) A comparative study of three tissue-cultured Dendrobium species and their wild correspondences by headspace gas chromatography-mass spectrometry combined with chemometric methods. J Food Drug Anal 24(4):839–847. https://doi.org/10.1016/j.jfda.2016.05.006
doi: 10.1016/j.jfda.2016.05.006
pubmed: 28911623
pmcid: 9337285
Kil HY, Seong ES, Ghimire BK, Chung I-M, Kwon SS, Goh EJ et al (2009) Antioxidant and antimicrobial activities of crude sorghum extract. Food Chem 115(4):1234–1239. https://doi.org/10.1016/j.foodchem.2009.01.032
doi: 10.1016/j.foodchem.2009.01.032
Xiang F, Bai J, Tan X, Chen T, Yang W, He F (2018) Antimicrobial activities and mechanism of the essential oil from Artemisia argyi Levl. et Van. Var. argyi cv. Qiai. Indust Crops Prod 125:582–7. https://doi.org/10.1016/j.indcrop.2018.09.048
doi: 10.1016/j.indcrop.2018.09.048
Guo D, Yang Y, Wu Y, Liu Y, Cao L, Shi Y et al (2023) Chemical composition analysis and discrimination of essential oils of Artemisia argyi Folium from different germplasm resources based on electronic nose and GC/MS combined with chemometrics. Chem Biodivers. https://doi.org/10.1002/cbdv.202200991
doi: 10.1002/cbdv.202200991
pubmed: 37801345
Salim M, Kabeer TKA, Nair SA, Dan M, Sabu M, Baby S (2016) Chemical profile, antiproliferative and antioxidant activities of rhizome oil of Zingiber anamalayanum from Western Ghats in India. Nat Prod Res 30(17):1965–1968. https://doi.org/10.1080/14786419.2015.1094802
doi: 10.1080/14786419.2015.1094802
pubmed: 26456637
Bajer T, Silha D, Ventura K, Bajerova P (2017) Composition and antimicrobial activity of the essential oil, distilled aromatic water and herbal infusion from Epilobium parviflorum Schreb. Ind Crops Prod 100:95–105. https://doi.org/10.1016/j.indcrop.2017.02.016
doi: 10.1016/j.indcrop.2017.02.016
Ezzatzadeh E, Sofla SFI, Pourghasem E, Rustaiyan A, Zarezadeh A (2014) Antimicrobial activity and chemical constituents of the essential oils from root, leaf and aerial part of Nepeta asterotricha from Iran. J Essential Oil Bearing Plants 17(3):415–421. https://doi.org/10.1080/0972060x.2014.901624
doi: 10.1080/0972060x.2014.901624
Badr MM, Taktak NEM, Badawy MEI (2023) Comparison of the antimicrobial and antioxidant activities of tea tree (Melaleuca alternifolia) oil and its main component terpinen-4-ol with their nanoemulsions. Egypt J Chem 66(2):111–120. https://doi.org/10.21608/ejchem.2022.131758.5808
doi: 10.21608/ejchem.2022.131758.5808
Ozek G, Ozek T, Iscan G, Baser KHC, Hamzaoglu E, Duran A (2007) Composition and antimicrobial activity of the essential oil of Tanacetum cadmeum (Boiss.) heywood subsp orientale grierson. J Essential Oil Res 19(4):392–5
Loughlin R, Gilmore BF, McCarron PA, Tunney MM (2008) Comparison of the cidal activity of tea tree oil and terpinen-4-ol against clinical bacterial skin isolates and human fibroblast cells. Lett Appl Microbiol 46(4):428–433. https://doi.org/10.1111/j.1472-765X.2008.02334.x
doi: 10.1111/j.1472-765X.2008.02334.x
pubmed: 18298453
Ramage G, Milligan S, Lappin DF, Sherry L, Sweeney P, Williams C et al (2012) Antifungal, cytotoxic, and immunomodulatory properties of tea tree oil and its derivative components: potential role in management of oral candidosis in cancer patients. Front Microbiol 3. https://doi.org/10.3389/fmicb.2012.00220
Buttress JA, Halte M, Te Winkel JD, Erhardt M, Popp PF, Strahl H (2022) A guide for membrane potential measurements in Gram-negative bacteria using voltage-sensitive dyes. Microbiology (Reading, England) 168(9). https://doi.org/10.1099/mic.0.001227
He F, Yang Y, Yang G, Yu L (2010) Studies on antibacterial activity and antibacterial mechanism of a novel polysaccharide from Streptomyces virginia H03. Food Control 21(9):1257–1262. https://doi.org/10.1016/j.foodcont.2010.02.013
doi: 10.1016/j.foodcont.2010.02.013
Hernandez I, Whitton BA (1996) Retention of p-nitrophenol and 4-methylumbelliferone by marine macroalgae and implications for measurement of alkaline phosphatase activity. J Phycol 32(5):819–825. https://doi.org/10.1111/j.0022-3646.1996.00819.x
doi: 10.1111/j.0022-3646.1996.00819.x