Local field potentials, spiking activity, and receptive fields in human visual cortex.
human visual cortex
intracranial EEG
local field potential
receptive field
spiking activity
Journal
Science China. Life sciences
ISSN: 1869-1889
Titre abrégé: Sci China Life Sci
Pays: China
ID NLM: 101529880
Informations de publication
Date de publication:
09 Nov 2023
09 Nov 2023
Historique:
received:
29
06
2023
accepted:
21
08
2023
medline:
14
11
2023
pubmed:
14
11
2023
entrez:
13
11
2023
Statut:
aheadofprint
Résumé
The concept of receptive field (RF) is central to sensory neuroscience. Neuronal RF properties have been substantially studied in animals, while those in humans remain nearly unexplored. Here, we measured neuronal RFs with intracranial local field potentials (LFPs) and spiking activity in human visual cortex (V1/V2/V3). We recorded LFPs via macro-contacts and discovered that RF sizes estimated from low-frequency activity (LFA, 0.5-30 Hz) were larger than those estimated from low-gamma activity (LGA, 30-60 Hz) and high-gamma activity (HGA, 60-150 Hz). We then took a rare opportunity to record LFPs and spiking activity via microwires in V1 simultaneously. We found that RF sizes and temporal profiles measured from LGA and HGA closely matched those from spiking activity. In sum, this study reveals that spiking activity of neurons in human visual cortex could be well approximated by LGA and HGA in RF estimation and temporal profile measurement, implying the pivotal functions of LGA and HGA in early visual information processing.
Identifiants
pubmed: 37957484
doi: 10.1007/s11427-023-2436-x
pii: 10.1007/s11427-023-2436-x
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2023. Science China Press.
Références
Adesnik, H., Bruns, W., Taniguchi, H., Huang, Z.J., and Scanziani, M. (2012). A neural circuit for spatial summation in visual cortex. Nature 490, 226–231.
pubmed: 23060193
pmcid: 3621107
doi: 10.1038/nature11526
Andoni, S., Tan, A., and Priebe, N. (2013). The cortical assembly of visual receptive fields. In: Werner, J.S., and Leo, M., eds. The New Visual Neurosciences. Cambridge: MIT Press. 367–380.
Angelucci, A., Levitt, J.B., Walton, E.J.S., Hupé, J.M., Bullier, J., and Lund, J.S. (2002). Circuits for local and global signal integration in primary visual cortex. J Neurosci 22, 8633–8646.
pubmed: 12351737
pmcid: 6757772
doi: 10.1523/JNEUROSCI.22-19-08633.2002
Angelucci, A., Bijanzadeh, M., Nurminen, L., Federer, F., Merlin, S., and Bressloff, P.C. (2017). Circuits and mechanisms for surround modulation in visual cortex. Annu Rev Neurosci 40, 425–451.
pubmed: 28471714
pmcid: 5697758
doi: 10.1146/annurev-neuro-072116-031418
Aquino, T.G., Minxha, J., Dunne, S., Ross, I.B., Mamelak, A.N., Rutishauser, U., and O’Doherty, J.P. (2020). Value-related neuronal responses in the human amygdala during observational learning. J Neurosci 40, 4761–4772.
pubmed: 32376780
pmcid: 7294800
doi: 10.1523/JNEUROSCI.2897-19.2020
Bartoli, E., Bosking, W., Chen, Y., Li, Y., Sheth, S.A., Beauchamp, M.S., Yoshor, D., and Foster, B.L. (2019). Functionally distinct gamma range activity revealed by stimulus tuning in human visual cortex. Curr Biol 29, 3345–3358.e7.
pubmed: 31588003
pmcid: 6810857
doi: 10.1016/j.cub.2019.08.004
Bastos, A.M., Vezoli, J., Bosman, C.A., Schoffelen, J.M., Oostenveld, R., Dowdall, J.R., De Weerd, P., Kennedy, H., and Fries, P. (2015). Visual areas exert feedforward and feedback influences through distinct frequency channels. Neuron 85, 390–401.
pubmed: 25556836
doi: 10.1016/j.neuron.2014.12.018
Bauer, R., Brosch, M., and Eckhorn, R. (1995). Different rules of spatial summation from beyond the receptive field for spike rates and oscillation amplitudes in cat visual cortex. Brain Res 669, 291–297.
pubmed: 7712185
doi: 10.1016/0006-8993(94)01273-K
Beaulieu-Laroche, L., Toloza, E.H.S., van der Goes, M.S., Lafourcade, M., Barnagian, D., Williams, Z.M., Eskandar, E.N., Frosch, M.P., Cash, S.S., and Harnett, M.T. (2018). Enhanced dendritic compartmentalization in human cortical neurons. Cell 175, 643–651.e14.
pubmed: 30340039
pmcid: 6197488
doi: 10.1016/j.cell.2018.08.045
Belitski, A., Gretton, A., Magri, C., Murayama, Y., Montemurro, M.A., Logothetis, N. K., and Panzeri, S. (2008). Low-frequency local field potentials and spikes in primary visual cortex convey independent visual information. J Neurosci 28, 5696–5709.
pubmed: 18509031
pmcid: 6670798
doi: 10.1523/JNEUROSCI.0009-08.2008
Benson, N.C., Butt, O.H., Brainard, D.H., and Aguirre, G.K. (2014). Correction of distortion in flattened representations of the cortical surface allows prediction of V1-V3 functional organization from anatomy. PLoS Comput Biol 10, e1003538.
pubmed: 24676149
pmcid: 3967932
doi: 10.1371/journal.pcbi.1003538
Beauchamp, M.S., Oswalt, D., Sun, P., Foster, B.L., Magnotti, J.F., Niketeghad, S., Pouratian, N., Bosking, W.H., and Yoshor, D. (2020). Dynamic stimulation of visual cortex produces form vision in sighted and blind humans. Cell 181, 774–783.e5.
pubmed: 32413298
pmcid: 7331799
doi: 10.1016/j.cell.2020.04.033
Blasdel, G.G., and Fitzpatrick, D. (1984). Physiological organization of layer 4 in macaque striate cortex. J Neurosci 4, 880–895.
pubmed: 6200586
pmcid: 6564839
doi: 10.1523/JNEUROSCI.04-03-00880.1984
Boldog, E., Bakken, T.E., Hodge, R.D., Novotny, M., Aevermann, B.D., Baka, J., Bordé, S., Close, J.L., Diez-Fuertes, F., Ding, S.L., et al. (2018). Transcriptomic and morphophysiological evidence for a specialized human cortical GABAergic cell type. Nat Neurosci 21, 1185–1195.
pubmed: 30150662
pmcid: 6130849
doi: 10.1038/s41593-018-0205-2
Bosking, W.H., Sun, P., Ozker, M., Pei, X., Foster, B.L., Beauchamp, M.S., and Yoshor, D. (2017). Saturation in phosphene size with increasing current levels delivered to human visual cortex. J Neurosci 37, 7188–7197.
pubmed: 28652411
pmcid: 5546398
doi: 10.1523/JNEUROSCI.2896-16.2017
Brunet, N.M., and Fries, P. (2019). Human visual cortical gamma reflects natural image structure. NeuroImage 200, 635–643.
pubmed: 31247299
doi: 10.1016/j.neuroimage.2019.06.051
Burns, S.P., Xing, D., and Shapley, R.M. (2010). Comparisons of the dynamics of local field potential and multiunit activity signals in macaque visual cortex. J Neurosci 30, 13739–13749.
pubmed: 20943914
pmcid: 3518461
doi: 10.1523/JNEUROSCI.0743-10.2010
Buzsáki, G., and Draguhn, A. (2004). Neuronal oscillations in cortical networks. Science 304, 1926–1929.
pubmed: 15218136
doi: 10.1126/science.1099745
Dale, A.M., Fischl, B., and Sereno, M.I. (1999). Cortical surface-based analysis: I. Segmentation and surface reconstruction. NeuroImage 9, 179–194.
pubmed: 9931268
doi: 10.1006/nimg.1998.0395
Davidesco, I., Harel, M., Ramot, M., Kramer, U., Kipervasser, S., Andelman, F., Neufeld, M.Y., Goelman, G., Fried, I., and Malach, R. (2013). Spatial and object-based attention modulates broadband high-frequency responses across the human visual cortical hierarchy. J Neurosci 33, 1228–1240.
pubmed: 23325259
pmcid: 6704891
doi: 10.1523/JNEUROSCI.3181-12.2013
Delorme, A., and Makeig, S. (2004). EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134, 9–21.
pubmed: 15102499
doi: 10.1016/j.jneumeth.2003.10.009
Dubey, A., and Ray, S. (2020). Comparison of tuning properties of gamma and high-gamma power in local field potential (LFP) versus electrocorticogram (ECoG) in visual cortex. Sci Rep 10, 5422.
pubmed: 32214127
pmcid: 7096473
doi: 10.1038/s41598-020-61961-9
Dumoulin, S.O., and Wandell, B.A. (2008). Population receptive field estimates in human visual cortex. NeuroImage 39, 647–660.
pubmed: 17977024
doi: 10.1016/j.neuroimage.2007.09.034
Engel, S.A., Glover, G.H., and Wandell, B.A. (1997). Retinotopic organization in human visual cortex and the spatial precision of functional MRI. Cereb Cortex 7, 181–192.
pubmed: 9087826
doi: 10.1093/cercor/7.2.181
Fischer, B., and Wegener, D. (2021). Monkey V1 epidural field potentials provide detailed information about stimulus location, size, shape, and color. Commun Biol 4, 1–3.
doi: 10.1038/s42003-021-02207-w
Fischl, B., and Dale, A.M. (2000). Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci USA 97, 11050–11055.
pubmed: 10984517
pmcid: 27146
doi: 10.1073/pnas.200033797
Foster, B.L., Rangarajan, V., Shirer, W.R., and Parvizi, J. (2015). Intrinsic and task-dependent coupling of neuronal population activity in human parietal cortex. Neuron 86, 578–590.
pubmed: 25863718
pmcid: 4409557
doi: 10.1016/j.neuron.2015.03.018
Fracasso, A., Petridou, N., and Dumoulin, S.O. (2016). Systematic variation of population receptive field properties across cortical depth in human visual cortex. NeuroImage 139, 427–438.
pubmed: 27374728
doi: 10.1016/j.neuroimage.2016.06.048
Friston, K.J., Ashburner, J.T., Kiebel, S.J., Nichols, T.E., and Penny, W.D. (2011). Statistical Parametric Mapping: The Analysis of Functional Brain Images. Amsterdam: Elsevier.
Fu, Y., Yan, W., Shen, M., and Chen, H. (2021). Does consciousness overflow cognitive access? Novel insights from the new phenomenon of attribute amnesia. Sci China Life Sci 64, 847–860.
pubmed: 33515433
doi: 10.1007/s11427-020-1831-8
Gattass, R., Gross, C.G., and Sandell, J.H. (1981). Visual topography of V2 in the macaque. J Comp Neurol 201, 519–539.
pubmed: 7287933
doi: 10.1002/cne.902010405
Gieselmann, M.A., and Thiele, A. (2008). Comparison of spatial integration and surround suppression characteristics in spiking activity and the local field potential in macaque V1. Eur J Neurosci 28, 447–459.
pubmed: 18702717
doi: 10.1111/j.1460-9568.2008.06358.x
Gilbert, C.D., Hirsch, J.A., and Wiesel, T.N. (1990). Lateral interactions in visual cortex. Cold Spring Harb Symp Quant Biol 55, 663–677.
pubmed: 2132846
doi: 10.1101/SQB.1990.055.01.063
Golan, T., Davidesco, I., Meshulam, M., Groppe, D.M., Mégevand, P., Yeagle, E.M., Goldfinger, M.S., Harel, M., Melloni, L., Schroeder, C.E., et al. (2017). Increasing suppression of saccade-related transients along the human visual hierarchy. eLife 6, e27819.
pubmed: 28850030
pmcid: 5576487
doi: 10.7554/eLife.27819
Han, C., Wang, T., Yang, Y., Wu, Y., Li, Y., Dai, W., Zhang, Y., Wang, B., Yang, G., Cao, Z., et al. (2021). Multiple gamma rhythms carry distinct spatial frequency information in primary visual cortex. PLoS Biol 19, e3001466.
pubmed: 34932558
pmcid: 8691622
doi: 10.1371/journal.pbio.3001466
Hermes, D., Miller, K.J., Wandell, B.A., and Winawer, J. (2014). Stimulus dependence of gamma oscillations in human visual cortex. Cereb Cortex 25, 2951–2959.
pubmed: 24855114
pmcid: 4537439
doi: 10.1093/cercor/bhu091
Hermes, D., Miller, K.J., Wandell, B.A., and Winawer, J. (2015). Gamma oscillations in visual cortex: the stimulus matters. Trends Cogn Sci 19, 57–58.
pubmed: 25575448
pmcid: 4395850
doi: 10.1016/j.tics.2014.12.009
Hermes, D., Petridou, N., Kay, K.N., and Winawer, J. (2019). An image-computable model for the stimulus selectivity of gamma oscillations. eLife 8, e47035.
pubmed: 31702552
pmcid: 6839904
doi: 10.7554/eLife.47035
Hubel, D.H., and Wiesel, T.N. (1959). Receptive fields of single neurones in the cat’s striate cortex. J Physiol 148, 574–591.
pubmed: 14403679
pmcid: 1363130
doi: 10.1113/jphysiol.1959.sp006308
Jensen, O., Bonnefond, M., Marshall, T.R., and Tiesinga, P. (2015). Oscillatory mechanisms of feedforward and feedback visual processing. Trends Neuroscis 38, 192–194.
doi: 10.1016/j.tins.2015.02.006
Kaas, J.H., and Herculano-Houzel, S. (2017). What makes the human brain special: key features of brain and neocortex. In: Opris, I., and Casanova, M.F., eds. The Physics of the Mind and Brain Disorders. Springer Series in Cognitive and Neural Systems. Cham: Springer. 3–22.
doi: 10.1007/978-3-319-29674-6_1
Keliris, G.A., Li, Q., Papanikolaou, A., Logothetis, N.K., and Smirnakis, S.M. (2019). Estimating average single-neuron visual receptive field sizes by fMRI. Proc Natl Acad Sci USA 116, 6425–6434.
pubmed: 30867291
pmcid: 6442598
doi: 10.1073/pnas.1809612116
Kleiner, M., Brainard, D., and Pelli, D. (2007). What’s new in Psychtoolbox-3? Perception 36, 1–16.
Klink, P.C., Chen, X., Vanduffel, W., and Roelfsema, P.R. (2021). Population receptive fields in nonhuman primates from whole-brain fMRI and large-scale neurophysiology in visual cortex. eLife 10, e67304.
pubmed: 34730515
pmcid: 8641953
doi: 10.7554/eLife.67304
Kreiman, G., Hung, C.P., Kraskov, A., Quiroga, R.Q., Poggio, T., and DiCarlo, J.J. (2006). Object selectivity of local field potentials and spikes in the macaque inferior temporal cortex. Neuron 49, 433–445.
pubmed: 16446146
doi: 10.1016/j.neuron.2005.12.019
Leszczynski, M., Barczak, A., Kajikawa, Y., Ulbert, I., Falchier, A.Y., Tal, I., Haegens, S., Melloni, L., Knight, R.T., and Schroeder, C.E. (2020). Dissociation of broadband high-frequency activity and neuronal firing in the neocortex. Sci Adv 6, eabb0977.
pubmed: 32851172
pmcid: 7423365
doi: 10.1126/sciadv.abb0977
Levitt, J.B., and Lund, J.S. (2002). The spatial extent over which neurons in macaque striate cortex pool visual signals. Vis Neurosci 19, 439–452.
pubmed: 12511077
doi: 10.1017/S0952523802194065
Lu, J., Luo, L., Wang, Q., Fang, F., and Chen, N. (2021). Cue-triggered activity replay in human early visual cortex. Sci China Life Sci 64, 144–151.
pubmed: 32557289
doi: 10.1007/s11427-020-1726-5
Mamelak, A.N. (2014). Ethical and practical considerations for human microelectrode recording studies. In: Fried, I., Rutishauser, U., Cerf, M., and Kreiman, G., eds. Single Neuron Studies of the Human Brain: Probing Cognition. Cambridge: MIT Press. 27–42.
Marg, E., Adams, J.E., and Rutkin, B. (1968). Receptive fields of cells in the human visual cortex. Experientia 24, 348–350.
pubmed: 5705184
doi: 10.1007/BF02140814
Martin, A.B., Yang, X., Saalmann, Y.B., Wang, L., Shestyuk, A., Lin, J.J., Parvizi, J., Knight, R.T., and Kastner, S. (2019). Temporal dynamics and response modulation across the human visual system in a spatial attention task: an ECoG study. J Neurosci 39, 333–352.
pubmed: 30459219
pmcid: 6325255
doi: 10.1523/JNEUROSCI.1889-18.2018
Michalareas, G., Vezoli, J., van Pelt, S., Schoffelen, J.M., Kennedy, H., and Fries, P. (2016). Alpha-beta and gamma rhythms subserve feedback and feedforward influences among human visual cortical areas. Neuron 89, 384–397.
pubmed: 26777277
pmcid: 4871751
doi: 10.1016/j.neuron.2015.12.018
Misra, A., Burke, J.F., Ramayya, A.G., Jacobs, J., Sperling, M.R., Moxon, K.A., Kahana, M.J., Evans, J.J., and Sharan, A.D. (2014). Methods for implantation of micro-wire bundles and optimization of single/multi-unit recordings from human mesial temporal lobe. J Neural Eng 11, 026013.
pubmed: 24608589
pmcid: 4019382
doi: 10.1088/1741-2560/11/2/026013
Minxha, J., Adolphs, R., Fusi, S., Mamelak, A.N., and Rutishauser, U. (2020). Flexible recruitment of memory-based choice representations by the human medial frontal cortex. Science 368, eaba3313.
pubmed: 32586990
pmcid: 7531893
doi: 10.1126/science.aba3313
Mukamel, R., Gelbard, H., Arieli, A., Hasson, U., Fried, I., and Malach, R. (2005). Coupling between neuronal firing, field potentials, and fMRI in human auditory cortex. Science 309, 951–954.
pubmed: 16081741
doi: 10.1126/science.1110913
Mukamel, R., Nir, Y., Harel, M., Arieli, A., Malach, R., and Fried, I. (2011). Invariance of firing rate and field potential dynamics to stimulus modulation rate in human auditory cortex. Hum Brain Mapp 32, 1181–1193.
pubmed: 20665720
doi: 10.1002/hbm.21100
Nir, Y., Fisch, L., Mukamel, R., Gelbard-Sagiv, H., Arieli, A., Fried, I., and Malach, R. (2007). Coupling between neuronal firing rate, gamma LFP, and BOLD fMRI is related to interneuronal correlations. Curr Biol 17, 1275–1285.
pubmed: 17686438
doi: 10.1016/j.cub.2007.06.066
Onorato, I., Neuenschwander, S., Hoy, J., Lima, B., Rocha, K.S., Broggini, A.C., Uran, C., Spyropoulos, G., Klon-Lipok, J., Womelsdorf, T., et al. (2020). A distinct class of bursting neurons with strong gamma synchronization and stimulus selectivity in monkey V1. Neuron 105, 180–197.e5.
pubmed: 31732258
doi: 10.1016/j.neuron.2019.09.039
Oostenveld, R., Fries, P., Maris, E., and Schoffelen, J.M. (2011). FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput Intell Neurosci 2011, 1–9.
doi: 10.1155/2011/156869
Parvizi, J., and Kastner, S. (2018). Promises and limitations of human intracranial electroencephalography. Nat Neurosci 21, 474–483.
pubmed: 29507407
pmcid: 6476542
doi: 10.1038/s41593-018-0108-2
Perge, J.A., Zhang, S., Malik, W.Q., Homer, M.L., Cash, S., Friehs, G., Eskandar, E.N., Donoghue, J.P., and Hochberg, L.R. (2014). Reliability of directional information in unsorted spikes and local field potentials recorded in human motor cortex. J Neural Eng 11, 046007.
pubmed: 24921388
pmcid: 4142142
doi: 10.1088/1741-2560/11/4/046007
Peter, A., Uran, C., Klon-Lipok, J., Roese, R., van Stijn, S., Barnes, W., Dowdall, J.R., Singer, W., Fries, P., and Vinck, M. (2019). Surface color and predictability determine contextual modulation of V1 firing and gamma oscillations. eLife 8, e42101.
pubmed: 30714900
pmcid: 6391066
doi: 10.7554/eLife.42101
Pryluk, R., Kfir, Y., Gelbard-Sagiv, H., Fried, I., and Paz, R. (2019). A tradeoff in the neural code across regions and species. Cell 176, 597–609.e18.
pubmed: 30661754
pmcid: 6784833
doi: 10.1016/j.cell.2018.12.032
Rasch, M.J., Gretton, A., Murayama, Y., Maass, W., and Logothetis, N.K. (2008). Inferring spike trains from local field potentials. J Neurophysiol 99, 1461–1476.
pubmed: 18160425
doi: 10.1152/jn.00919.2007
Ray, S., Crone, N.E., Niebur, E., Franaszczuk, P.J., and Hsiao, S.S. (2008a). Neural correlates of high-gamma oscillations (60–200 Hz) in Macaque local field potentials and their potential implications in electrocorticography. J Neurosci 28, 11526–11536.
pubmed: 18987189
pmcid: 2715840
doi: 10.1523/JNEUROSCI.2848-08.2008
Ray, S., Hsiao, S.S., Crone, N.E., Franaszczuk, P.J., and Niebur, E. (2008b). Effect of stimulus intensity on the spike-local field potential relationship in the secondary somatosensory cortex. J Neurosci 28, 7334–7343.
pubmed: 18632937
pmcid: 2597587
doi: 10.1523/JNEUROSCI.1588-08.2008
Ray, S., and Maunsell, J.H.R. (2011a). Different origins of gamma rhythm and high-gamma activity in macaque visual cortex. PLoS Biol 9, e1000610.
pubmed: 21532743
pmcid: 3075230
doi: 10.1371/journal.pbio.1000610
Ray, S., and Maunsell, J.H.R. (2011b). Network rhythms influence the relationship between spike-triggered local field potential and functional connectivity. J Neurosci 31, 12674–12682.
pubmed: 21880928
pmcid: 3488382
doi: 10.1523/JNEUROSCI.1856-11.2011
Rutishauser, U., Schuman, E.M., and Mamelak, A.N. (2006). Online detection and sorting of extracellularly recorded action potentials in human medial temporal lobe recordings, in vivo. J Neurosci Methods 154, 204–224.
pubmed: 16488479
doi: 10.1016/j.jneumeth.2005.12.033
Self, M.W., Peters, J.C., Possel, J.K., Reithler, J., Goebel, R., Ris, P., Jeurissen, D., Reddy, L., Claus, S., Baayen, J.C., et al. (2016). The effects of context and attention on spiking activity in human early visual cortex. PLoS Biol 14, e1002420.
pubmed: 27015604
pmcid: 4807817
doi: 10.1371/journal.pbio.1002420
Sereno, M.I., Dale, A.M., Reppas, J.B., Kwong, K.K., Belliveau, J.W., Brady, T.J., Rosen, B.R., and Tootell, R.B.H. (1995). Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 268, 889–893.
pubmed: 7754376
doi: 10.1126/science.7754376
Stettler, D.D., Das, A., Bennett, J., and Gilbert, C.D. (2002). Lateral connectivity and contextual interactions in macaque primary visual cortex. Neuron 36, 739–750.
pubmed: 12441061
doi: 10.1016/S0896-6273(02)01029-2
Tadel, F., Baillet, S., Mosher, J.C., Pantazis, D., and Leahy, R.M. (2011). Brainstorm: a user-friendly application for MEG/EEG analysis. Comput Intell Neurosci 2011, 879716.
pubmed: 21584256
pmcid: 3090754
doi: 10.1155/2011/879716
van Kerkoerle, T., Self, M.W., Dagnino, B., Gariel-Mathis, M.A., Poort, J., van der Togt, C., and Roelfsema, P.R. (2014). Alpha and gamma oscillations characterize feedback and feedforward processing in monkey visual cortex. Proc Natl Acad Sci USA 111, 14332–14341.
pubmed: 25205811
pmcid: 4210002
doi: 10.1073/pnas.1402773111
Wandell, B.A., Dumoulin, S.O., and Brewer, A.A. (2007). Visual field maps in human cortex. Neuron 56, 366–383.
pubmed: 17964252
doi: 10.1016/j.neuron.2007.10.012
Wandell, B.A., and Winawer, J. (2015). Computational neuroimaging and population receptive fields. Trends Cogn Sci 19, 349–357.
pubmed: 25850730
pmcid: 4484758
doi: 10.1016/j.tics.2015.03.009
Werner, J.S., and Spillmann, L. (1990). Visual Perception: The Neurophysiological Foundations. New York: Academic Press.
Williams, A.L., Singh, K.D., and Smith, A.T. (2003). Surround modulation measured with functional MRI in the human visual cortex. J Neurophysiol 89, 525–533.
pubmed: 12522199
doi: 10.1152/jn.00048.2002
Wilson, C.L., Babb, T.L., Halgren, E., and Crandall, P.H. (1983). Visual receptive fields and response properties of neurons in human temporal lobe and visual pathways. Brain 106, 473–502.
pubmed: 6850279
doi: 10.1093/brain/106.2.473
Winawer, J., Kay, K.N., Foster, B.L., Rauschecker, A.M., Parvizi, J., and Wandell, B.A. (2013). Asynchronous broadband signals are the principal source of the BOLD response in human visual cortex. Curr Biol 23, 1145–1153.
pubmed: 23770184
pmcid: 3710543
doi: 10.1016/j.cub.2013.05.001
Winawer, J., and Parvizi, J. (2016). Linking electrical stimulation of human primary visual cortex, size of affected cortical area, neuronal responses, and subjective experience. Neuron 92, 1213–1219.
pubmed: 27939584
pmcid: 5182175
doi: 10.1016/j.neuron.2016.11.008
Yoshor, D., Bosking, W.H., Ghose, G.M., and Maunsell, J.H.R. (2007). Receptive fields in human visual cortex mapped with surface electrodes. Cereb Cortex 17, 2293–2302.
pubmed: 17172632
doi: 10.1093/cercor/bhl138
Zanos, S., Zanos, T.P., Marmarelis, V.Z., Ojemann, G.A., and Fetz, E.E. (2012). Relationships between spike-free local field potentials and spike timing in human temporal cortex. J Neurophysiol 107, 1808–1821.
pubmed: 22157112
doi: 10.1152/jn.00663.2011
Zhang, Y., Zhang, Y.Y., and Fang, F. (2020). Neural mechanisms of feature binding. Sci China Life Sci 63, 926–928.
pubmed: 32133593
doi: 10.1007/s11427-019-1615-4
Zhang, Z., Zhang, H., Xie, C.M., Zhang, M., Shi, Y., Song, R., Lu, X., Zhang, H., Li, K., Wang, B., et al. (2021). Task-related functional magnetic resonance imaging-based neuronavigation for the treatment of depression by individualized repetitive transcranial magnetic stimulation of the visual cortex. Sci China Life Sci 64, 96–106.
pubmed: 32542515
doi: 10.1007/s11427-020-1730-5
Zhou, J., Benson, N.C., Kay, K., and Winawer, J. (2019). Predicting neuronal dynamics with a delayed gain control model. PLoS Comput Biol 15, e1007484.
pubmed: 31747389
pmcid: 6892546
doi: 10.1371/journal.pcbi.1007484