Clinical Text Summarization: Adapting Large Language Models Can Outperform Human Experts.
Journal
Research square
Titre abrégé: Res Sq
Pays: United States
ID NLM: 101768035
Informations de publication
Date de publication:
30 Oct 2023
30 Oct 2023
Historique:
pubmed:
14
11
2023
medline:
14
11
2023
entrez:
14
11
2023
Statut:
epublish
Résumé
Sifting through vast textual data and summarizing key information from electronic health records (EHR) imposes a substantial burden on how clinicians allocate their time. Although large language models (LLMs) have shown immense promise in natural language processing (NLP) tasks, their efficacy on a diverse range of clinical summarization tasks has not yet been rigorously demonstrated. In this work, we apply domain adaptation methods to eight LLMs, spanning six datasets and four distinct clinical summarization tasks: radiology reports, patient questions, progress notes, and doctor-patient dialogue. Our thorough quantitative assessment reveals trade-offs between models and adaptation methods in addition to instances where recent advances in LLMs may not improve results. Further, in a clinical reader study with ten physicians, we show that summaries from our best-adapted LLMs are preferable to human summaries in terms of completeness and correctness. Our ensuing qualitative analysis highlights challenges faced by both LLMs and human experts. Lastly, we correlate traditional quantitative NLP metrics with reader study scores to enhance our understanding of how these metrics align with physician preferences. Our research marks the first evidence of LLMs outperforming human experts in clinical text summarization across multiple tasks. This implies that integrating LLMs into clinical workflows could alleviate documentation burden, empowering clinicians to focus more on personalized patient care and the inherently human aspects of medicine.
Identifiants
pubmed: 37961377
doi: 10.21203/rs.3.rs-3483777/v1
pmc: PMC10635391
pii:
doi:
Types de publication
Preprint
Langues
eng
Subventions
Organisme : NIBIB NIH HHS
ID : R01 EB002524
Pays : United States
Organisme : NHLBI NIH HHS
ID : 75N92020C00021
Pays : United States
Organisme : AHRQ HHS
ID : R18 HS026886
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL155410
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL157235
Pays : United States
Organisme : NIAMS NIH HHS
ID : R01 AR077604
Pays : United States
Organisme : NIBIB NIH HHS
ID : P41 EB027060
Pays : United States
Organisme : NHLBI NIH HHS
ID : 75N92020C00008
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL167974
Pays : United States
Organisme : NIAMS NIH HHS
ID : R01 AR079431
Pays : United States
Références
Stud Health Technol Inform. 2019 Aug 21;264:1194-1198
pubmed: 31438114
NPJ Digit Med. 2023 Aug 24;6(1):158
pubmed: 37620423
J Chiropr Med. 2016 Jun;15(2):155-63
pubmed: 27330520
Ann Fam Med. 2017 Sep;15(5):419-426
pubmed: 28893811
IEEE Trans Vis Comput Graph. 2023 Jan;29(1):1146-1156
pubmed: 36191099
Ann Intern Med. 2016 Dec 06;165(11):753-760
pubmed: 27595430
Nurs Adm Q. 2010 Jan-Mar;34(1):E1-E10
pubmed: 20023554
Sci Data. 2023 Sep 6;10(1):586
pubmed: 37673893
Sci Data. 2019 Dec 12;6(1):317
pubmed: 31831740
Curr Opin Anaesthesiol. 2018 Jun;31(3):357-360
pubmed: 29474217
J Trauma Acute Care Surg. 2016 May;80(5):742-5; discussion 745-7
pubmed: 26886003
Proc Conf Assoc Comput Linguist Meet. 2023 Jul;2023:461-467
pubmed: 37583489
Nat Med. 2023 Aug;29(8):1930-1940
pubmed: 37460753
NPJ Digit Med. 2023 Jul 29;6(1):135
pubmed: 37516790
J Am Med Inform Assoc. 2018 Sep 1;25(9):1197-1201
pubmed: 29982549
Perspect Health Inf Manag. 2013 Oct 01;10:1c
pubmed: 24159271
Medicine (Baltimore). 2018 Sep;97(38):e12319
pubmed: 30235684
J Am Med Inform Assoc. 2010 Jan-Feb;17(1):104-7
pubmed: 20064810
AMIA Annu Symp Proc. 2011;2011:465-9
pubmed: 22195100
Comput Inform Nurs. 2016 Apr;34(4):183-90
pubmed: 26886680
Int J Environ Res Public Health. 2013 May 31;10(6):2214-40
pubmed: 23727902
Mayo Clin Proc. 2016 Jul;91(7):836-48
pubmed: 27313121