Intrinsic dynamics of randomly clustered networks generate place fields and preplay of novel environments.
Journal
bioRxiv : the preprint server for biology
Titre abrégé: bioRxiv
Pays: United States
ID NLM: 101680187
Informations de publication
Date de publication:
24 Nov 2023
24 Nov 2023
Historique:
pubmed:
14
11
2023
medline:
14
11
2023
entrez:
14
11
2023
Statut:
epublish
Résumé
During both sleep and awake immobility, hippocampal place cells reactivate time-compressed versions of sequences representing recently experienced trajectories in a phenomenon known as replay. Intriguingly, spontaneous sequences can also correspond to forthcoming trajectories in novel environments experienced later, in a phenomenon known as preplay. Here, we present a model showing that sequences of spikes correlated with the place fields underlying spatial trajectories in both previously experienced and future novel environments can arise spontaneously in neural circuits with random, clustered connectivity rather than pre-configured spatial maps. Moreover, the realistic place fields themselves arise in the circuit from minimal, landmark-based inputs. We find that preplay quality depends on the network's balance of cluster isolation and overlap, with optimal preplay occurring in small-world regimes of high clustering yet short path lengths. We validate the results of our model by applying the same place field and preplay analyses to previously published rat hippocampal place cell data. Our results show that clustered recurrent connectivity can generate spontaneous preplay and immediate replay of novel environments. These findings support a framework whereby novel sensory experiences become associated with preexisting "pluripotent" internal neural activity patterns.
Identifiants
pubmed: 37961479
doi: 10.1101/2023.10.26.564173
pmc: PMC10634993
pii:
doi:
Types de publication
Preprint
Langues
eng
Subventions
Organisme : NIMH NIH HHS
ID : R01 MH112661
Pays : United States
Organisme : NIMH NIH HHS
ID : R01 MH120228
Pays : United States
Organisme : NINDS NIH HHS
ID : R01 NS104818
Pays : United States
Références
Front Comput Neurosci. 2013 Nov 12;7:161
pubmed: 24282402
Hippocampus. 2008;18(12):1270-82
pubmed: 19021262
PLoS Biol. 2005 Mar;3(3):e68
pubmed: 15737062
Annu Rev Neurosci. 2008;31:69-89
pubmed: 18284371
Proc Natl Acad Sci U S A. 2014 Dec 30;111(52):18428-35
pubmed: 25489089
Nat Commun. 2023 Aug 7;14(1):4723
pubmed: 37550285
Nat Neurosci. 2009 Jul;12(7):913-8
pubmed: 19525943
Front Comput Neurosci. 2011 Sep 12;5:37
pubmed: 21991253
Science. 2016 Mar 25;351(6280):1440-3
pubmed: 27013730
J Neurosci. 1997 Aug 1;17(15):5900-20
pubmed: 9221787
Science. 2005 Jul 22;309(5734):619-23
pubmed: 16040709
Nat Commun. 2016 May 13;7:11552
pubmed: 27174042
Nature. 1998 Jun 4;393(6684):440-2
pubmed: 9623998
Hippocampus. 2019 Mar;29(3):275-283
pubmed: 30260526
Nat Neurosci. 2015 Dec;18(12):1772-9
pubmed: 26502260
Neuron. 2017 Apr 19;94(2):363-374.e4
pubmed: 28426969
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Aug;76(2 Pt 2):026107
pubmed: 17930104
Nature. 1982 Jun 24;297(5868):681-3
pubmed: 7088155
Curr Biol. 2018 Nov 19;28(22):3578-3588.e6
pubmed: 30393037
Annu Rev Neurosci. 2022 Jul 8;45:1-21
pubmed: 34936810
Nature. 2006 Mar 30;440(7084):680-3
pubmed: 16474382
J Neurosci. 2015 Dec 09;35(49):16236-58
pubmed: 26658873
Elife. 2018 Oct 25;7:
pubmed: 30355442
Cell. 2020 Nov 25;183(5):1249-1263.e23
pubmed: 33181068
Elife. 2022 Jun 16;11:
pubmed: 35708741
Science. 2004 Aug 27;305(5688):1295-8
pubmed: 15272123
Nat Neurosci. 2011 Feb;14(2):147-53
pubmed: 21270783
PLoS One. 2008 Apr 30;3(4):e0002051
pubmed: 18446219
Cell Rep. 2023 Feb 28;42(2):112119
pubmed: 36807137
Science. 2008 Dec 19;322(5909):1865-8
pubmed: 19095945
Neuron. 2000 Nov;28(2):585-94
pubmed: 11144366
Sci Rep. 2016 Feb 23;6:21468
pubmed: 26902707
J Neurosci. 1987 Jul;7(7):1935-50
pubmed: 3612225
J Neurosci. 2004 Sep 1;24(35):7681-9
pubmed: 15342735
Nat Commun. 2014 Nov 14;5:5319
pubmed: 25395015
Nature. 2011 Jan 20;469(7330):397-401
pubmed: 21179088
Neuron. 2009 Jun 25;62(6):781-7
pubmed: 19555647
Neuroimage. 2011 Feb 14;54(4):2683-94
pubmed: 21073960
Science. 2008 Feb 29;319(5867):1260-4
pubmed: 18218862
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Nov;70(5 Pt 2):056110
pubmed: 15600695
Science. 1994 Jul 29;265(5172):676-9
pubmed: 8036517
Elife. 2019 May 13;8:
pubmed: 31081753
Front Neural Circuits. 2012 Feb 21;6:6
pubmed: 22363267
Nat Neurosci. 2008 Feb;11(2):209-15
pubmed: 18193040
Curr Biol. 2020 Sep 21;30(18):3556-3569.e5
pubmed: 32707066
Elife. 2018 Jul 03;7:
pubmed: 29969098
J Physiol. 1998 Feb 15;507 ( Pt 1):237-47
pubmed: 9490845
Neuron. 2017 Sep 27;96(1):217-227.e4
pubmed: 28957670
Neuron. 2019 Aug 21;103(4):719-733.e7
pubmed: 31253469
J Neurosci. 2014 Jun 4;34(23):7769-77
pubmed: 24899701
Am J Community Psychol. 2015 Jun;55(3-4):369-80
pubmed: 25851733
Proc Biol Sci. 2006 Feb 22;273(1585):503-11
pubmed: 16615219
Trends Neurosci. 2014 Mar;37(3):136-45
pubmed: 24485517
Neuron. 2022 Jun 1;110(11):1829-1842.e5
pubmed: 35381188
Proc Natl Acad Sci U S A. 2022 May 17;119(20):e2200931119
pubmed: 35561219
Neuron. 2019 Dec 18;104(6):1110-1125.e7
pubmed: 31677957
Proc Natl Acad Sci U S A. 2013 May 28;110(22):9100-5
pubmed: 23671088
Annu Rev Neurosci. 2004;27:279-306
pubmed: 15217334
J Neurophysiol. 2016 May 1;115(5):2359-75
pubmed: 26888108
Hippocampus. 2019 Oct;29(10):921-938
pubmed: 30891854