Light-adaptation clamp: a tool to predictably manipulate photoreceptor light responses.
Journal
bioRxiv : the preprint server for biology
Titre abrégé: bioRxiv
Pays: United States
ID NLM: 101680187
Informations de publication
Date de publication:
23 Oct 2023
23 Oct 2023
Historique:
pubmed:
14
11
2023
medline:
14
11
2023
entrez:
14
11
2023
Statut:
epublish
Résumé
Computation in neural circuits relies on judicious use of nonlinear circuit components. In many cases, multiple nonlinear components work collectively to control circuit outputs. Separating the contributions of these different components is difficult, and this hampers our understanding of the mechanistic basis of many important computations. Here, we introduce a tool that permits the design of light stimuli that predictably alter rod and cone phototransduction currents - including the compensation for nonlinear properties such as light adaptation. This tool, based on well-established models for the rod and cone phototransduction cascade, permits the separation of nonlinearities in phototransduction from those in downstream circuits. This will allow, for example, direct tests of the role of photoreceptor adaptation in downstream visual signals or in perception.
Identifiants
pubmed: 37961603
doi: 10.1101/2023.10.20.563304
pmc: PMC10634684
pii:
doi:
Types de publication
Preprint
Langues
eng
Subventions
Organisme : NEI NIH HHS
ID : R01 EY028542
Pays : United States
Références
J Physiol. 1990 Aug;427:681-713
pubmed: 2100987
Trends Neurosci. 2002 Mar;25(3):124-6
pubmed: 11852136
J Physiol. 2010 Feb 1;588(Pt 3):435-46
pubmed: 20008463
J Physiol. 2008 Sep 15;586(18):4377-84
pubmed: 18617564
J Vis. 2014 Mar 03;14(3):1
pubmed: 24591566
J Physiol. 1976 Jul;259(2):251-82
pubmed: 986460
J Neurosci. 2006 Jan 18;26(3):1036-44
pubmed: 16421323
Nature. 2008 Aug 21;454(7207):995-9
pubmed: 18650810
Curr Opin Neurobiol. 2006 Aug;16(4):363-70
pubmed: 16837189
Nature. 2007 Oct 4;449(7162):603-6
pubmed: 17851533
Network. 2001 May;12(2):199-213
pubmed: 11405422
Science. 1991 Jun 28;252(5014):1854-7
pubmed: 2063199
Elife. 2020 Nov 04;9:
pubmed: 33146609
Elife. 2022 Mar 14;11:
pubmed: 35285798
Prog Retin Eye Res. 2015 Mar;45:58-110
pubmed: 25307992
J Physiol. 1971 Apr;214(2):265-94
pubmed: 5579638
Vision Res. 2006 May;46(10):1585-98
pubmed: 16403546
Annu Rev Neurosci. 2001;24:779-805
pubmed: 11520918
J Neurophysiol. 1996 Jan;75(1):354-66
pubmed: 8822563
Biophys J. 1996 Nov;71(5):2553-72
pubmed: 8913594
J Vis. 2015;15(15):1
pubmed: 26523737
J Physiol. 1979 Jun;291:75-100
pubmed: 225478
Nat Neurosci. 2013 Nov;16(11):1692-700
pubmed: 24097042
Neuron. 2010 Jan 28;65(2):150-64
pubmed: 20152123
J Neurosci. 2022 Feb 16;42(7):1254-1274
pubmed: 34949692
J Physiol. 1976 May;257(2):379-406
pubmed: 950599
Neuron. 2011 Oct 20;72(2):231-43
pubmed: 22017986
Proc Natl Acad Sci U S A. 1986 Mar;83(5):1174-8
pubmed: 3006038
J Physiol. 1979 Mar;288:589-611
pubmed: 112242
Vision Res. 1989;29(11):1501-9
pubmed: 2635476
Adv Neural Inf Process Syst. 2016;29:1369-1377
pubmed: 28729779
Neuron. 2002 Aug 15;35(4):733-47
pubmed: 12194872
Nature. 1997 Oct 2;389(6650):505-9
pubmed: 9333241
Biochim Biophys Acta. 1993 Mar 1;1141(2-3):111-49
pubmed: 8382952
J Vis. 2012 Sep 14;12(10):8
pubmed: 22984221
PLoS Comput Biol. 2013;9(11):e1003289
pubmed: 24244119
Nat Neurosci. 2016 Mar;19(3):348-9
pubmed: 26906500
Nat Neurosci. 2000 Nov;3 Suppl:1167
pubmed: 11127830
Neuron. 2002 Sep 26;36(1):81-91
pubmed: 12367508
Biophys Chem. 1995 Sep-Oct;56(1-2):183-8
pubmed: 7662865
Nat Neurosci. 2019 Jan;22(1):15-24
pubmed: 30531846
J Gen Physiol. 2019 Nov 4;151(11):1287-1299
pubmed: 31562185
Annu Rev Neurosci. 2013 Jul 8;36:403-28
pubmed: 23724996
J Gen Physiol. 2000 Dec;116(6):795-824
pubmed: 11099349
Am J Ophthalmol. 2000 Nov;130(5):547-63
pubmed: 11078833