Calorie restriction reduces biomarkers of cellular senescence in humans.
CALERIE™
aging
biomarkers
caloric restriction
inflammation
metabolism
senescence-associated secretory phenotype
Journal
Aging cell
ISSN: 1474-9726
Titre abrégé: Aging Cell
Pays: England
ID NLM: 101130839
Informations de publication
Date de publication:
14 Nov 2023
14 Nov 2023
Historique:
revised:
19
10
2023
received:
02
10
2023
accepted:
22
10
2023
medline:
14
11
2023
pubmed:
14
11
2023
entrez:
14
11
2023
Statut:
aheadofprint
Résumé
Calorie restriction (CR) with adequate nutrient intake is a potential geroprotective intervention. To advance this concept in humans, we tested the hypothesis that moderate CR in healthy young-to-middle-aged individuals would reduce circulating biomarkers of cellular senescence, a fundamental mechanism of aging and aging-related conditions. Using plasma specimens from the Comprehensive Assessment of Long-term Effects of Reducing Intake of Energy (CALERIE™) phase 2 study, we found that CR significantly reduced the concentrations of several senescence biomarkers at 12 and 24 months compared to an ad libitum diet. Using machine learning, changes in biomarker concentrations emerged as important predictors of the change in HOMA-IR and insulin sensitivity index at 12 and 24 months, and the change in resting metabolic rate residual at 12 months. Finally, using adipose tissue RNA-sequencing data from a subset of participants, we observed a significant reduction in a senescence-focused gene set in response to CR at both 12 and 24 months compared to baseline. Our results advance the understanding of the effects of CR in humans and further support a link between cellular senescence and metabolic health.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e14038Subventions
Organisme : NIDDK NIH HHS
ID : P30 DK072476
Pays : United States
Organisme : NIGMS NIH HHS
ID : U54 GM104940
Pays : United States
Organisme : NIA NIH HHS
ID : P01 AG062413
Pays : United States
Organisme : NIA NIH HHS
ID : R01 AG055529
Pays : United States
Organisme : NIA NIH HHS
ID : R01 AG076515
Pays : United States
Organisme : NIA NIH HHS
ID : R01AG071717
Pays : United States
Organisme : NIA NIH HHS
ID : R33AG070455
Pays : United States
Organisme : NIA NIH HHS
ID : R56 AG060907
Pays : United States
Organisme : NIA NIH HHS
ID : U01AG020478
Pays : United States
Organisme : NIA NIH HHS
ID : U01AG020480
Pays : United States
Organisme : NIA NIH HHS
ID : U01AG020487
Pays : United States
Organisme : NIA NIH HHS
ID : U01AG022132
Pays : United States
Informations de copyright
© 2023 The Authors. Aging Cell published by Anatomical Society and John Wiley & Sons Ltd.
Références
Acosta, J. C., Banito, A., Wuestefeld, T., Georgilis, A., Janich, P., Morton, J. P., Athineos, D., Kang, T. W., Lasitschka, F., Andrulis, M., Pascual, G., Morris, K. J., Khan, S., Jin, H., Dharmalingam, G., Snijders, A. P., Carroll, T., Capper, D., Pritchard, C., … Gil, J. (2013). A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nature Cell Biology, 15(8), 978-990. https://doi.org/10.1038/ncb2784
Armamento-Villareal, R., Sadler, C., Napoli, N., Shah, K., Chode, S., Sinacore, D. R., Qualls, C., & Villareal, D. T. (2012). Weight loss in obese older adults increases serum sclerostin and impairs hip geometry but both are prevented by exercise training. Journal of Bone and Mineral Research, 27(5), 1215-1221. https://doi.org/10.1002/jbmr.1560
Aversa, Z., Atkinson, E. J., Carmona, E. M., White, T. A., Heeren, A. A., Jachim, S. K., Zhang, X., Cummings, S. R., Chiarella, S. E., Limper, A. H., & LeBrasseur, N. K. (2023). Biomarkers of cellular senescence in idiopathic pulmonary fibrosis. Respiratory Research, 24(1), 101. https://doi.org/10.1186/s12931-023-02403-8
Balasubramanian, P., Howell, P. R., & Anderson, R. M. (2017). Aging and caloric restriction research: A biological perspective with translational potential. eBioMedicine, 21, 37-44. https://doi.org/10.1016/j.ebiom.2017.06.015
Basisty, N., Kale, A., Jeon, O. H., Kuehnemann, C., Payne, T., Rao, C., Holtz, A., Shah, S., Sharma, V., Ferrucci, L., Campisi, J., & Schilling, B. (2020). A proteomic atlas of senescence-associated secretomes for aging biomarker development. PLoS Biology, 18(1), e3000599. https://doi.org/10.1371/journal.pbio.3000599
Belsky, D. W., Huffman, K. M., Pieper, C. F., Shalev, I., & Kraus, W. E. (2017). Change in the rate of biological aging in response to caloric restriction: CALERIE biobank analysis. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 73(1), 4-10. https://doi.org/10.1093/gerona/glx096
Bongarzone, S., Savickas, V., Luzi, F., & Gee, A. D. (2017). Targeting the receptor for advanced glycation Endproducts (RAGE): A medicinal chemistry perspective. Journal of Medicinal Chemistry, 60(17), 7213-7232. https://doi.org/10.1021/acs.jmedchem.7b00058
Coppé, J. P., Desprez, P. Y., Krtolica, A., & Campisi, J. (2010). The senescence-associated secretory phenotype: The dark side of tumor suppression. Annual Review of Pathology, 5, 99-118. https://doi.org/10.1146/annurev-pathol-121808-102144
Das, S. K., Gilhooly, C. H., Golden, J. K., Pittas, A. G., Fuss, P. J., Cheatham, R. A., Tyler, S., Tsay, M., McCrory, M. A., Lichtenstein, A. H., Dallal, G. E., Dutta, C., Bhapkar, M. V., Delany, J. P., Saltzman, E., & Roberts, S. B. (2007). Long-term effects of 2 energy-restricted diets differing in glycemic load on dietary adherence, body composition, and metabolism in CALERIE: A 1-y randomized controlled trial. The American Journal of Clinical Nutrition, 85(4), 1023-1030. https://doi.org/10.1093/ajcn/85.4.1023
Delgado-Calle, J., Sato, A. Y., & Bellido, T. (2017). Role and mechanism of action of sclerostin in bone. Bone, 96, 29-37. https://doi.org/10.1016/j.bone.2016.10.007
Di Micco, R., Krizhanovsky, V., Baker, D., & d'Adda di Fagagna, F. (2021). Cellular senescence in ageing: From mechanisms to therapeutic opportunities. Nature Reviews. Molecular Cell Biology, 22(2), 75-95. https://doi.org/10.1038/s41580-020-00314-w
Englund, D. A., Jolliffe, A., Aversa, Z., Zhang, X., Sturmlechner, I., Sakamoto, A. E., Zeidler, J. D., Warner, G. M., McNinch, C., White, T. A., Chini, E. N., Baker, D. J., van Deursen, J. M., & LeBrasseur, N. K. (2023). p21 induces a senescence program and skeletal muscle dysfunction. Molecular Metabolism, 67, 101652. https://doi.org/10.1016/j.molmet.2022.101652
Ferrucci, L., & Fabbri, E. (2018). Inflammageing: Chronic inflammation in ageing, cardiovascular disease, and frailty. Nature Reviews. Cardiology, 15(9), 505-522. https://doi.org/10.1038/s41569-018-0064-2
Fielding, R. A., Atkinson, E. J., Aversa, Z., White, T. A., Heeren, A. A., Achenbach, S. J., Mielke, M. M., Cummings, S. R., Pahor, M., Leeuwenburgh, C., & LeBrasseur, N. K. (2022). Associations between biomarkers of cellular senescence and physical function in humans: Observations from the lifestyle interventions for elders (LIFE) study. Geroscience, 44(6), 2757-2770. https://doi.org/10.1007/s11357-022-00685-2
Fontana, L., Mitchell, S. E., Wang, B., Tosti, V., van Vliet, T., Veronese, N., Bertozzi, B., Early, D. S., Maissan, P., Speakman, J. R., & Demaria, M. (2018). The effects of graded caloric restriction: XII. Comparison of mouse to human impact on cellular senescence in the colon. Aging Cell, 17(3), e12746. https://doi.org/10.1111/acel.12746
Green, C. L., Lamming, D. W., & Fontana, L. (2022). Molecular mechanisms of dietary restriction promoting health and longevity. Nature Reviews. Molecular Cell Biology, 23(1), 56-73. https://doi.org/10.1038/s41580-021-00411-4
Heilbronn, L. K., de Jonge, L., Frisard, M. I., DeLany, J. P., Larson-Meyer, D. E., Rood, J., Nguyen, T., Martin, C. K., Volaufova, J., Most, M. M., Greenway, F. L., Smith, S. R., Deutsch, W. A., Williamson, D. A., & Ravussin, E. (2006). Effect of 6-month calorie restriction on biomarkers of longevity, metabolic adaptation, and oxidative stress in overweight individuals: A randomized controlled trial. JAMA, 295(13), 1539-1548. https://doi.org/10.1001/jama.295.13.1539
Hernandez-Segura, A., Nehme, J., & Demaria, M. (2018). Hallmarks of cellular senescence. Trends in Cell Biology, 28(6), 436-453. https://doi.org/10.1016/j.tcb.2018.02.001
Huffman, K. M., Parker, D. C., Bhapkar, M., Racette, S. B., Martin, C. K., Redman, L. M., Das, S. K., Connelly, M. A., Pieper, C. F., Orenduff, M., Ross, L. M., Ramaker, M. E., Dorling, J. L., Rosen, C. J., Shalaurova, I., Otvos, J. D., Kraus, V. B., & Kraus, W. E. (2022). Calorie restriction improves lipid-related emerging cardiometabolic risk factors in healthy adults without obesity: Distinct influences of BMI and sex from CALERIE™ a multicentre, phase 2, randomised controlled trial. EClinicalMedicine, 43, 101261. https://doi.org/10.1016/j.eclinm.2021.101261
Kale, A., Sharma, A., Stolzing, A., Desprez, P. Y., & Campisi, J. (2020). Role of immune cells in the removal of deleterious senescent cells. Immunity & Ageing, 17, 16. https://doi.org/10.1186/s12979-020-00187-9
Kraus, W. E., Bhapkar, M., Huffman, K. M., Pieper, C. F., Krupa Das, S., Redman, L. M., Villareal, D. T., Rochon, J., Roberts, S. B., Ravussin, E., Holloszy, J. O., & Fontana, L. (2019). 2 years of calorie restriction and cardiometabolic risk (CALERIE): Exploratory outcomes of a multicentre, phase 2, randomised controlled trial. The Lancet Diabetes and Endocrinology, 7(9), 673-683. https://doi.org/10.1016/s2213-8587(19)30151-2
Krishnamurthy, J., Torrice, C., Ramsey, M. R., Kovalev, G. I., Al-Regaiey, K., Su, L., & Sharpless, N. E. (2004). Ink4a/Arf expression is a biomarker of aging. The Journal of Clinical Investigation, 114(9), 1299-1307. https://doi.org/10.1172/jci22475
Kumar, V., Fleming, T., Terjung, S., Gorzelanny, C., Gebhardt, C., Agrawal, R., Mall, M. A., Ranzinger, J., Zeier, M., Madhusudhan, T., Ranjan, S., Isermann, B., Liesz, A., Deshpande, D., Häring, H. U., Biswas, S. K., Reynolds, P. R., Hammes, H. P., Peperkok, R., … Nawroth, P. P. (2017). Homeostatic nuclear RAGE-ATM interaction is essential for efficient DNA repair. Nucleic Acids Research, 45(18), 10595-10613. https://doi.org/10.1093/nar/gkx705
Lee, H. W., Muniyappa, R., Yan, X., Yue, L. Q., Linden, E. H., Chen, H., Hansen, B. C., & Quon, M. J. (2011). Comparison between surrogate indexes of insulin sensitivity/resistance and hyperinsulinemic euglycemic glucose clamps in rhesus monkeys. Endocrinology, 152(2), 414-423. https://doi.org/10.1210/en.2010-1164
López-Lluch, G., & Navas, P. (2016). Calorie restriction as an intervention in ageing. The Journal of Physiology, 594(8), 2043-2060. https://doi.org/10.1113/jp270543
Matthews, D. R., Hosker, J. P., Rudenski, A. S., Naylor, B. A., Treacher, D. F., & Turner, R. C. (1985). Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia, 28(7), 412-419. https://doi.org/10.1007/bf00280883
Mau, T., O'Brien, M., Ghosh, A. K., Miller, R. A., & Yung, R. (2020). Life-span extension drug interventions affect adipose tissue inflammation in aging. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 75(1), 89-98. https://doi.org/10.1093/gerona/glz177
Ning, Y. C., Cai, G. Y., Zhuo, L., Gao, J. J., Dong, D., Cui, S., Feng, Z., Shi, S. Z., Bai, X. Y., Sun, X. F., & Chen, X. M. (2013). Short-term calorie restriction protects against renal senescence of aged rats by increasing autophagic activity and reducing oxidative damage. Mechanisms of Ageing and Development, 134(11-12), 570-579. https://doi.org/10.1016/j.mad.2013.11.006
Palmer, A. K., Tchkonia, T., & Kirkland, J. L. (2022). Targeting cellular senescence in metabolic disease. Molecular Metabolism, 66, 101601. https://doi.org/10.1016/j.molmet.2022.101601
Palmer, A. K., Xu, M., Zhu, Y., Pirtskhalava, T., Weivoda, M. M., Hachfeld, C. M., Prata, L. G., van Dijk, T. H., Verkade, E., Casaclang-Verzosa, G., Johnson, K. O., Cubro, H., Doornebal, E. J., Ogrodnik, M., Jurk, D., Jensen, M. D., Chini, E. N., Miller, J. D., Matveyenko, A., … Kirkland, J. L. (2019). Targeting senescent cells alleviates obesity-induced metabolic dysfunction. Aging Cell, 18(3), e12950. https://doi.org/10.1111/acel.12950
Racette, S. B., Weiss, E. P., Villareal, D. T., Arif, H., Steger-May, K., Schechtman, K. B., Fontana, L., Klein, S., & Holloszy, J. O. (2006). One year of caloric restriction in humans: Feasibility and effects on body composition and abdominal adipose tissue. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 61(9), 943-950. https://doi.org/10.1093/gerona/61.9.943
Ravussin, E., Redman, L. M., Rochon, J., Das, S. K., Fontana, L., Kraus, W. E., Romashkan, S., Williamson, D. A., Meydani, S. N., Villareal, D. T., Smith, S. R., Stein, R. I., Scott, T. M., Stewart, T. M., Saltzman, E., Klein, S., Bhapkar, M., Martin, C. K., Gilhooly, C. H., … Roberts, S. B. (2015). A 2-year randomized controlled trial of human caloric restriction: Feasibility and effects on predictors of health span and longevity. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 70(9), 1097-1104. https://doi.org/10.1093/gerona/glv057
Redman, L. M., Smith, S. R., Burton, J. H., Martin, C. K., Il'yasova, D., & Ravussin, E. (2018). Metabolic slowing and reduced oxidative damage with sustained caloric restriction support the rate of living and oxidative damage theories of aging. Cell Metabolism, 27(4), 805-815.e804. https://doi.org/10.1016/j.cmet.2018.02.019
Rochon, J., Bales, C. W., Ravussin, E., Redman, L. M., Holloszy, J. O., Racette, S. B., Roberts, S. B., Das, S. K., Romashkan, S., Galan, K. M., Hadley, E. C., & Kraus, W. E. (2011). Design and conduct of the CALERIE study: Comprehensive assessment of the long-term effects of reducing intake of energy. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 66(1), 97-108. https://doi.org/10.1093/gerona/glq168
Saul, D., Kosinsky, R. L., Atkinson, E. J., Doolittle, M. L., Zhang, X., LeBrasseur, N. K., Pignolo, R. J., Robbins, P. D., Niedernhofer, L. J., Ikeno, Y., Jurk, D., Passos, J. F., Hickson, L. J., Xue, A., Monroe, D. G., Tchkonia, T., Kirkland, J. L., Farr, J. N., & Khosla, S. (2022). A new gene set identifies senescent cells and predicts senescence-associated pathways across tissues. Nature Communications, 13(1), 4827. https://doi.org/10.1038/s41467-022-32552-1
Schafer, M. J., White, T. A., Evans, G., Tonne, J. M., Verzosa, G. C., Stout, M. B., Mazula, D. L., Palmer, A. K., Baker, D. J., Jensen, M. D., Torbenson, M. S., Miller, J. D., Ikeda, Y., Tchkonia, T., van Deursen, J. M., Kirkland, J. L., & LeBrasseur, N. K. (2016). Exercise prevents diet-induced cellular senescence in adipose tissue. Diabetes, 65(6), 1606-1615. https://doi.org/10.2337/db15-0291
Schafer, M. J., Zhang, X., Kumar, A., Atkinson, E. J., Zhu, Y., Jachim, S., Mazula, D. L., Brown, A. K., Berning, M., Aversa, Z., Kotajarvi, B., Bruce, C. J., Greason, K. L., Suri, R. M., Tracy, R. P., Cummings, S. R., White, T. A., & LeBrasseur, N. K. (2020). The senescence-associated secretome as an indicator of age and medical risk. JCI Insight, 5(12), e133668. https://doi.org/10.1172/jci.insight.133668
Spadaro, O., Youm, Y., Shchukina, I., Ryu, S., Sidorov, S., Ravussin, A., Nguyen, K., Aladyeva, E., Predeus, A. N., Smith, S. R., Ravussin, E., Galban, C., Artyomov, M. N., & Dixit, V. D. (2022). Caloric restriction in humans reveals immunometabolic regulators of health span. Science, 375(6581), 671-677. https://doi.org/10.1126/science.abg7292
Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., Paulovich, A., Pomeroy, S. L., Golub, T. R., Lander, E. S., & Mesirov, J. P. (2005). Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences of the United States of America, 102(43), 15545-15550. https://doi.org/10.1073/pnas.0506580102
Tanaka, T., Basisty, N., Fantoni, G., Candia, J., Moore, A. Z., Biancotto, A., Schilling, B., Bandinelli, S., & Ferrucci, L. (2020). Plasma proteomic biomarker signature of age predicts health and life span. eLife, 9, e61073. https://doi.org/10.7554/eLife.61073
Tanaka, T., Biancotto, A., Moaddel, R., Moore, A. Z., Gonzalez-Freire, M., Aon, M. A., Candia, J., Zhang, P., Cheung, F., Fantoni, G., Semba, R. D., & Ferrucci, L. (2018). Plasma proteomic signature of age in healthy humans. Aging Cell, 17(5), e12799. https://doi.org/10.1111/acel.12799
Villareal, D. T., Fontana, L., Das, S. K., Redman, L., Smith, S. R., Saltzman, E., Bales, C., Rochon, J., Pieper, C., Huang, M., Lewis, M., & Schwartz, A. V. (2016). Effect of two-year caloric restriction on bone metabolism and bone mineral density in non-obese younger adults: A randomized clinical trial. Journal of Bone and Mineral Research, 31(1), 40-51. https://doi.org/10.1002/jbmr.2701
Wang, C., Maddick, M., Miwa, S., Jurk, D., Czapiewski, R., Saretzki, G., Langie, S. A., Godschalk, R. W., Cameron, K., & von Zglinicki, T. (2010). Adult-onset, short-term dietary restriction reduces cell senescence in mice. Aging (Albany NY), 2(9), 555-566. https://doi.org/10.18632/aging.100196
Wang, L., Wang, B., Gasek, N. S., Zhou, Y., Cohn, R. L., Martin, D. E., Zuo, W., Flynn, W. F., Guo, C., Jellison, E. R., Kim, T., Prata, L., Palmer, A. K., Li, M., Inman, C. L., Barber, L. S., Al-Naggar, I. M. A., Zhou, Y., Du, W., … Xu, M. (2022). Targeting p21 (Cip1) highly expressing cells in adipose tissue alleviates insulin resistance in obesity. Cell Metabolism, 34(1), 75-89.e78. https://doi.org/10.1016/j.cmet.2021.11.002
Waziry, R., Ryan, C. P., Corcoran, D. L., Huffman, K. M., Kobor, M. S., Kothari, M., Graf, G. H., Kraus, V. B., Kraus, W. E., Lin, D. T. S., Pieper, C. F., Ramaker, M. E., Bhapkar, M., Das, S. K., Ferrucci, L., Hastings, W. J., Kebbe, M., Parker, D. C., Racette, S. B., … Belsky, D. W. (2023). Effect of long-term caloric restriction on DNA methylation measures of biological aging in healthy adults from the CALERIE trial. Nature Aging, 3(3), 248-257. https://doi.org/10.1038/s43587-022-00357-y
Wiley, C. D., & Campisi, J. (2021). The metabolic roots of senescence: Mechanisms and opportunities for intervention. Nature Metabolism, 3(10), 1290-1301. https://doi.org/10.1038/s42255-021-00483-8
Xu, M., Pirtskhalava, T., Farr, J. N., Weigand, B. M., Palmer, A. K., Weivoda, M. M., Inman, C. L., Ogrodnik, M. B., Hachfeld, C. M., Fraser, D. G., Onken, J. L., Johnson, K. O., Verzosa, G. C., Langhi, L. G. P., Weigl, M., Giorgadze, N., LeBrasseur, N. K., Miller, J. D., Jurk, D., … Kirkland, J. L. (2018). Senolytics improve physical function and increase lifespan in old age. Nature Medicine, 24(8), 1246-1256. https://doi.org/10.1038/s41591-018-0092-9
Xu, M., Tchkonia, T., Ding, H., Ogrodnik, M., Lubbers, E. R., Pirtskhalava, T., White, T. A., Johnson, K. O., Stout, M. B., Mezera, V., Giorgadze, N., Jensen, M. D., LeBrasseur, N. K., & Kirkland, J. L. (2015). JAK inhibition alleviates the cellular senescence-associated secretory phenotype and frailty in old age. Proceedings of the National Academy of Sciences of the United States of America, 112(46), E6301-E6310. https://doi.org/10.1073/pnas.1515386112
Yousefzadeh, M. J., Zhao, J., Bukata, C., Wade, E. A., McGowan, S. J., Angelini, L. A., Bank, M. P., Gurkar, A. U., McGuckian, C. A., Calubag, M. F., Kato, J. I., Burd, C. E., Robbins, P. D., & Niedernhofer, L. J. (2020). Tissue specificity of senescent cell accumulation during physiologic and accelerated aging of mice. Aging Cell, 19(3), e13094. https://doi.org/10.1111/acel.13094
Zhang, L., Pitcher, L. E., Yousefzadeh, M. J., Niedernhofer, L. J., Robbins, P. D., & Zhu, Y. (2022). Cellular senescence: A key therapeutic target in aging and diseases. The Journal of Clinical Investigation, 132(15), e158450. https://doi.org/10.1172/jci158450