Mechanism of Action of ECT in Depression.
Journal
Current topics in behavioral neurosciences
ISSN: 1866-3370
Titre abrégé: Curr Top Behav Neurosci
Pays: Germany
ID NLM: 101535383
Informations de publication
Date de publication:
15 Nov 2023
15 Nov 2023
Historique:
medline:
14
11
2023
pubmed:
14
11
2023
entrez:
14
11
2023
Statut:
aheadofprint
Résumé
Electroconvulsive therapy (ECT) remains the most potent antidepressant treatment available for patients with major depressive disorder (MDD). ECT is highly effective, achieving a response rate of 70-80% and a remission rate of 50-60% even in treatment-resistant patients. The underlying mechanisms of ECT are not fully understood, although several hypotheses have been proposed, including the monoamine hypothesis, anticonvulsive hypothesis, neuroplastic effects, and immunomodulatory properties. In this paper, we provide an overview of magnetic resonance imaging evidence that addresses the neuroplastic changes that occur after ECT at the human systems level and elaborate further on ECTs potent immunomodulatory properties. Despite a growing body of evidence that suggests ECT may normalize many of the structural and functional changes in the brain associated with severe depression, there is a lack of convergence between neurobiological changes and the robust clinical effects observed in depression. This may be due to sample sizes used in ECT studies being generally small and differences in data processing and analysis pipelines. Collaborations that acquire large datasets, such as the GEMRIC consortium, can help translate ECT's clinical efficacy into a better understanding of its mechanisms of action.
Identifiants
pubmed: 37962811
doi: 10.1007/7854_2023_450
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2023. The Author(s), under exclusive license to Springer Nature Switzerland AG.
Références
Abbott CC, Lemke NT, Gopal S et al (2013) Electroconvulsive therapy response in major depressive disorder: a pilot functional network connectivity resting state FMRI investigation. Front Psych 4:10. Published 2013 Mar 1. https://doi.org/10.3389/fpsyt.2013.00010
doi: 10.3389/fpsyt.2013.00010
Achard S, Salvador R, Whitcher B, Suckling J, Bullmore E (2006) A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J Neurosci 26(1):63–72. https://doi.org/10.1523/JNEUROSCI.3874-05.2006
doi: 10.1523/JNEUROSCI.3874-05.2006
Alexopoulos GS, Hoptman MJ, Kanellopoulos D, Murphy CF, Lim KO, Gunning FM (2012) Functional connectivity in the cognitive control network and the default mode network in late-life depression. J Affect Disord 139(1):56–65. https://doi.org/10.1016/j.jad.2011.12.002
doi: 10.1016/j.jad.2011.12.002
Argyelan M, Lencz T, Kaliora S, Sarpal DK, Weissman N, Kingsley PB et al (2016) Subgenual cingulate cortical activity predicts the efficacy of electroconvulsive therapy. Transl Psychiatry 6(4):e789
Argyelan M, Lencz T, Kang S, Ali S, Masi PJ, Moyett E, Joanlanne A, Watson P, Sanghani S, Petrides G, Malhotra AK (2021) ECT-induced cognitive side effects are associated with hippocampal enlargement. Transl Psychiatry 11(1):516. https://doi.org/10.1038/s41398-021-01641-y
doi: 10.1038/s41398-021-01641-y
Baeken C, Marinazzo D, Wu G-R, Van Schuerbeek P, De Mey J, Marchetti I et al (2014) Accelerated HF-rTMS in treatment-resistant unipolar depression: insights from subgenual anterior cingulate functional connectivity. World J Biol Psychiatry 15:286
Bai T, Wei Q, Xie W et al (2019a) Hippocampal-subregion functional alterations associated with antidepressant effects and cognitive impairments of electroconvulsive therapy. Psychol Med 49(8):1357–1364
Bai T, Wei Q, Zu M et al (2019b) Functional plasticity of the dorsomedial prefrontal cortex in depression reorganized by electroconvulsive therapy: validation in two independent samples. Hum Brain Mapp 40(2):465–473. https://doi.org/10.1002/hbm.24387
doi: 10.1002/hbm.24387
Belge JB, van Diermen L, Sabbe B, Parizel P, Morrens M, Coppens V, Constant E, de Timary P, Sienaert P, Schrijvers D, van Eijndhoven P (2020a) Inflammation, hippocampal volume, and therapeutic outcome following electroconvulsive therapy in depressive patients: a pilot study. Neuropsychobiology 79(3):222–232. https://doi.org/10.1159/000506133 . Epub 2020 Feb 28
doi: 10.1159/000506133
Belge JB, Van Diermen L, Schrijvers D et al (2020b) The basal ganglia: a central hub for the psychomotor effects of electroconvulsive therapy. J Affect Disord 265:239–246. https://doi.org/10.1016/j.jad.2020.01.033
doi: 10.1016/j.jad.2020.01.033
Belge JB, Mulders PCR, Oort JV, Diermen LV, Poljac E, Sabbe B, de Timary P, Constant E, Sienaert P, Schrijvers D, van Eijndhoven P (2021) Movement, mood and cognition: preliminary insights into the therapeutic effects of electroconvulsive therapy for depression through a resting-state connectivity analysis. J Affect Disord 290:117–127. https://doi.org/10.1016/j.jad.2021.04.069 . Epub 2021 May 3
doi: 10.1016/j.jad.2021.04.069
Belge JB, Mulders PCR, Van Diermen L, Schrijvers D, Sabbe B, Sienaert P, Oudega ML, Tendolkar I, Dols A, van Eijndhoven P (2022) White matter changes following electroconvulsive therapy for depression: a multicenter ComBat harmonization approach. Transl Psychiatry 12(1):517. https://doi.org/10.1038/s41398-022-02284-3 . PMCID: PMC9758171
doi: 10.1038/s41398-022-02284-3
Bioque M, Mac-Dowell KS, Meseguer A et al (2019) Effects of electroconvulsive therapy in the systemic inflammatory balance of patients with severe mental disorder. Psychiatry Clin Neurosci 73(10):628–635. https://doi.org/10.1111/pcn.12906
doi: 10.1111/pcn.12906
Bolwig TG (2014) Neuroimaging and electroconvulsive therapy: a review. J ECT 30(2):138–142. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24800687
Bora E, Fornito A, Pantelis C, Yücel M (2012) Gray matter abnormalities in major depressive disorder: a meta-analysis of voxel based morphometry studies. J Affect Disord 138(1–2):9–18. https://doi.org/10.1016/j.jad.2011.03.049
doi: 10.1016/j.jad.2011.03.049
Bouckaert F, De Winter FL, Emsell L et al (2016a) Grey matter volume increase following electroconvulsive therapy in patients with late life depression: a longitudinal MRI study. J Psychiatry Neurosci 41(2):105–114. https://doi.org/10.1503/jpn.140322
doi: 10.1503/jpn.140322
Bouckaert F, Dols A, Emsell L, De Winter F-L, Vansteelandt K, Claes L et al (2016b) Relationship between hippocampal volume, serum BDNF and depression severity following electroconvulsive therapy in late-life depression. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol:2741–2748
Cano M, Cardoner N, Urretavizcaya M, Martínez-Zalacaín I, Goldberg X, Via E et al (2016) Modulation of limbic and prefrontal connectivity by electroconvulsive therapy in treatment-resistant depression: a preliminary study. Brain Stimul 9(1):65–71. https://doi.org/10.1016/j.brs.2015.08.016
doi: 10.1016/j.brs.2015.08.016
Chen G, Hu X, Li L et al (2016) Disorganization of white matter architecture in major depressive disorder: a meta-analysis of diffusion tensor imaging with tract-based spatial statistics. Sci Rep 6:21825
Dantzer R, O'Connor JC, Freund GG, Johnson RW, Kelley KW (2008) From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 9(1):46–56. https://doi.org/10.1038/nrn2297 . PMCID: PMC2919277
doi: 10.1038/nrn2297
de Diego-Adeliño J, Pires P, Gómez-Ansón B et al (2014) Microstructural white-matter abnormalities associated with treatment resistance, severity and duration of illness in major depression. Psychol Med 44(6):1171–1182
Disner SG, Beevers CG, Haigh EA, Beck AT (2011) Neural mechanisms of the cognitive model of depression. Nat Rev Neurosci 12(8):467–477. Published 2011 Jul 6. https://doi.org/10.1038/nrn3027
doi: 10.1038/nrn3027
Drevets W, Savitz J, Trimble M (2008) The subgenual anterior cingulate cortex in mood disorders. CNS Spectr 13(8):663–681. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/pmc2729429/
Dukart J, Regen F, Kherif F et al (2014) Electroconvulsive therapy-induced brain plasticity determines therapeutic outcome in mood disorders. Proc Natl Acad Sci U S A 111(3):1156–1161. https://doi.org/10.1073/pnas.1321399111
doi: 10.1073/pnas.1321399111
Duthie AC, Perrin JS, Bennett DM, Currie J, Reid IC (2015) Anticonvulsant mechanisms of electroconvulsive therapy and relation to therapeutic efficacy. J ECT 31(3):173–178
Freire TFV, Rocha NSD, Fleck MPA (2017) The association of electroconvulsive therapy to pharmacological treatment and its influence on cytokines. J Psychiatr Res 92:205–211. https://doi.org/10.1016/j.jpsychires.2017.05.004
doi: 10.1016/j.jpsychires.2017.05.004
Gay F, Romeo B, Martelli C, Benyamina A, Hamdani N (2021) Cytokines changes associated with electroconvulsive therapy in patients with treatment-resistant depression: a meta-analysis. Psychiatry
Goldfarb S, Fainstein N, Ben-Hur T (2020) Electroconvulsive stimulation attenuates chronic neuroinflammation. JCI Insight 5(17):e137028. Published 2020 Sep 3. https://doi.org/10.1172/jci.insight.137028
doi: 10.1172/jci.insight.137028
Grimm S, Beck J, Schuepbach D et al (2008) Imbalance between left and right dorsolateral prefrontal cortex in major depression is linked to negative emotional judgment: an fMRI study in severe major depressive disorder. Biol Psychiatry 63(4):369–376
Groves AR, Beckmann CF, Smith SM, Woolrich MW (2011) Linked independent component analysis for multimodal data fusion. Neuroimage 54(3):2198–2217. https://doi.org/10.1016/j.neuroimage.2010.09.073
doi: 10.1016/j.neuroimage.2010.09.073
Gryglewski G, Seiger R, Baldinger-Melich P et al (2020) Changes in white matter microstructure after electroconvulsive therapy for treatment-resistant depression. Int J Neuropsychopharmacol 23(1):20–25
Guo W, Liu F, Xue Z et al (2013) Decreased interhemispheric coordination in treatment-resistant depression: a resting-state fMRI study. PloS One 8(8):e71368
Herrero MT, Barcia C, Navarro JM (2002) Functional anatomy of thalamus and basal ganglia. Childs Nerv Syst 18(8):386–404. https://doi.org/10.1007/s00381-002-0604-1
doi: 10.1007/s00381-002-0604-1
Holroyd CB, Umemoto A (2016) The research domain criteria framework: the case for anterior cingulate cortex. Neurosci Biobehav Rev 71:418–443. https://doi.org/10.1016/j.neubiorev.2016.09.021
doi: 10.1016/j.neubiorev.2016.09.021
Husain SS, Kevan IM, Linnell R, Scott AIF (2004) Electroconvulsive therapy in depressive illness that has not responded to drug treatment. J Affect Disord 83(2–3):121–126. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15555704
Jbabdi S, Sotiropoulos SN, Haber SN, Van Essen DC, Behrens TE (2015) Measuring macroscopic brain connections in vivo. Nat Neurosci 18:1546–1555
Järventausta K, Sorri A, Kampman O et al (2017) Changes in interleukin-6 levels during electroconvulsive therapy may reflect the therapeutic response in major depression. Acta Psychiatr Scand 135(1):87–92. https://doi.org/10.1111/acps.12665
doi: 10.1111/acps.12665
Kellner CH, Obbels J, Sienaert P (2020) When to consider electroconvulsive therapy (ECT). Acta Psychiatr Scand 141(4):304–315. https://doi.org/10.1111/acps.13134
doi: 10.1111/acps.13134
Kho KH, van Vreeswijk MF, Simpson S, Zwinderman AH (2003) A meta-analysis of electroconvulsive therapy efficacy in depression. J ECT 19(3):139–147. https://doi.org/10.1097/00124509-200309000-00005
doi: 10.1097/00124509-200309000-00005
Knyazeva MG (2013) Splenium of corpus callosum: patterns of interhemispheric interaction in children and adults. Neural Plast 2013:639430
Koolschijn PCMP, Van Haren NEM, Lensvelt-Mulders GJLM, Hulshoff Pol HE, Kahn RS (2009) Brain volume abnormalities in major depressive disorder: a meta-analysis of magnetic resonance imaging studies. Hum Brain Mapp 30(11):3719–3735
Kranaster L, Hoyer C, Aksay SS et al (2018) Antidepressant efficacy of electroconvulsive therapy is associated with a reduction of the innate cellular immune activity in the cerebrospinal fluid in patients with depression. World J Biol Psychiatry 19(5):379–389. https://doi.org/10.1080/15622975.2017.1355473
doi: 10.1080/15622975.2017.1355473
Kruse JL, Congdon E, Olmstead R et al (2018) Inflammation and improvement of depression following electroconvulsive therapy in treatment-resistant depression. J Clin Psychiatry 79(2):17m11597. https://doi.org/10.4088/JCP.17m11597
doi: 10.4088/JCP.17m11597
Lai CH, Wu YT, Hou YM (2017) Functional network-based statistics in depression: theory of mind subnetwork and importance of parietal region. J Affect Disord 217:132–137. https://doi.org/10.1016/j.jad.2017.03.073
doi: 10.1016/j.jad.2017.03.073
Leaver AM, Espinoza R, Pirnia T, Joshi SH, Woods RP, Narr KL (2016) Modulation of intrinsic brain activity by electroconvulsive therapy in major depression. Biol Psychiatry Cogn Neurosci Neuroimaging 1(1):77–86. https://doi.org/10.1016/j.bpsc.2015.09.001
doi: 10.1016/j.bpsc.2015.09.001
Le Bihan D (2003) Looking into the functional architecture of the brain with diffusion MRI. Nat Rev Neurosci 4(6):469–480
Liao Y, Huang X, Wu Q et al (2013) Is depression a disconnection syndrome? Meta-analysis of diffusion tensor imaging studies in patients with MDD. J Psychiatry Neurosci 38(1):49–56
Liston C, Chen AC, Zebley BD et al (2014) Default mode network mechanisms of transcranial magnetic stimulation in depression. Biol Psychiatry 76(7):517–526. https://doi.org/10.1016/j.biopsych.2014.01.023
doi: 10.1016/j.biopsych.2014.01.023
Liu Y, Du L, Li Y, Liu H, Zhao W, Liu D et al (2015) Antidepressant effects of electroconvulsive therapy correlate with subgenual anterior cingulate activity and connectivity in depression. Medicine 94(45):e2033. Available from: http://journals.lww.com/md-journal/Fulltext/2015/11110/Antidepressant_Effects_of_Electroconvulsive.65.aspx
Lyden H, Espinoza RT, Pirnia T et al (2014) Electroconvulsive therapy mediates neuroplasticity of white matter microstructure in major depression. Transl Psychiatry 4(4):e380
Madsen TM, Treschow A, Bengzon J, Bolwig TG, Lindvall O, Tingström A (2000) Increased neurogenesis in a model of electroconvulsive therapy. Biol Psychiatry 47(12):1043–1049. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10862803
Mayberg HS (1997) Limbic-cortical dysregulation: a proposed model of depression. J Neuropsychiatry Clin Neurosci 9(3):471–481. Available from: http://psychiatryonline.org/doi/abs/10.1176/jnp.9.3.471
Mayberg HS, Lozano AM, Voon V, HE MN, Seminowicz D, Hamani C et al (2005) Deep brain stimulation for treatment-resistant depression. Neuron 45(5):651–660. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15748841
Merkl A, Heuser I, Bajbouj M (2009) Antidepressant electroconvulsive therapy: mechanism of action, recent advances and limitations. Exp Neurol 219(1):20–26. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19426729
Miller AH, Maletic V, Raison CL (2009) Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol Psychiatry 65(9):732–741. https://doi.org/10.1016/j.biopsych.2008.11.029 . Epub 2009 Jan 15. PMCID: PMC2680424
doi: 10.1016/j.biopsych.2008.11.029
Mulders PC, van Eijndhoven PF, Schene AH, Beckmann CF, Tendolkar I (2015) Resting-state functional connectivity in major depressive disorder: a review. Neurosci Biobehav Rev 56:330–344. Available from: http://www.sciencedirect.com/science/article/pii/S0149763415001992
Mulders PCR, Llera A, Beckmann CF et al (2020) Structural changes induced by electroconvulsive therapy are associated with clinical outcome. Brain Stimul 13(3):696–704. https://doi.org/10.1016/j.brs.2020.02.020
doi: 10.1016/j.brs.2020.02.020
Murphy ML, Frodl T (2011) Meta-analysis of diffusion tensor imaging studies shows altered fractional anisotropy occurring in distinct brain areas in association with depression. Biol Mood Anxiety Disord 1(1):3
Nickl-Jockschat T, Palomero Gallagher N, Kumar V et al (2016) Are morphological changes necessary to mediate the therapeutic effects of electroconvulsive therapy? Eur Arch Psychiatry Clin Neurosci 266(3):261–267
Nobuhara K, Okugawa G, Minami T et al (2004) Effects of electroconvulsive therapy on frontal white matter in late-life depression: a diffusion tensor imaging study. Neuropsychobiology 50(1):48–53
Nolte J (2009) The human brain: an introduction to its functional anatomy, 6th edn. Mosby/Elsevier, Philadelphia
Nordanskog P, Larsson MR, Larsson EM, Johanson A (2014) Hippocampal volume in relation to clinical and cognitive outcome after electroconvulsive therapy in depression. Acta Psychiatr Scand 129(4):303–311
Northoff G, Wiebking C, Feinberg T, Panksepp J (2011) The “resting-state hypothesis” of major depressive disorder-a translational subcortical-cortical framework for a system disorder. Neurosci Biobehav Rev 35(9):1929–1945. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21192971
Nuninga JO, Mandl RCW, Boks MP et al (2020) Volume increase in the dentate gyrus after electroconvulsive therapy in depressed patients as measured with 7T. Mol Psychiatry 25(7):1559–1568. https://doi.org/10.1038/s41380-019-0392-6
doi: 10.1038/s41380-019-0392-6
Oltedal L, Narr KL, Abbott C et al (2018) Volume of the human hippocampus and clinical response following electroconvulsive therapy. Biol Psychiatry 84(8):574–581. https://doi.org/10.1016/j.biopsych.2018.05.017
doi: 10.1016/j.biopsych.2018.05.017
Ota M, Noda T, Sato N et al (2015) Effect of electroconvulsive therapy on gray matter volume in major depressive disorder. J Affect Disord 186:186–191. https://doi.org/10.1016/j.jad.2015.06.051
doi: 10.1016/j.jad.2015.06.051
Ousdal OT, Brancati GE, Kessler U et al (2022) The neurobiological effects of electroconvulsive therapy studied through magnetic resonance: what have we learned, and where do we go? Biol Psychiatry 91(6):540–549. https://doi.org/10.1016/j.biopsych.2021.05.023
doi: 10.1016/j.biopsych.2021.05.023
Perrin JS, Merz S, Bennett DM et al (2012) Electroconvulsive therapy reduces frontal cortical connectivity in severe depressive disorder. Proc Natl Acad Sci U S A 109(14):5464–5468. https://doi.org/10.1073/pnas.1117206109
doi: 10.1073/pnas.1117206109
Pirnia T, Joshi SH, Leaver AM, Vasavada M, Njau S, Woods RP et al (2016) Electroconvulsive therapy and structural neuroplasticity in neocortical, limbic and paralimbic cortex. Transl Psychiatry 6(6):e832
Pisner DA, Shumake J, Beevers CG, Schnyer DM (2019) The superior longitudinal fasciculus and its functional triple-network mechanisms in brooding. Neuroimage Clin 24:101935
Porta-Casteràs D, Cano M, Camprodon JA et al (2021) A multimetric systematic review of fMRI findings in patients with MDD receiving ECT. Prog Neuropsychopharmacol Biol Psychiatry 108:110178. https://doi.org/10.1016/j.pnpbp.2020.110178
doi: 10.1016/j.pnpbp.2020.110178
Raison CL, Capuron L, Miller AH (2006) Cytokines sing the blues: inflammation and the pathogenesis of depression. Trends Immunol 27(1):24–31. https://doi.org/10.1016/j.it.2005.11.006 . Epub 2005 Nov 28. PMCID: PMC3392963
doi: 10.1016/j.it.2005.11.006
Repple J, Meinert S, Bollettini I et al (2020) Influence of electroconvulsive therapy on white matter structure in a diffusion tensor imaging study. Psychol Med 50(5):849–856
Rotter A, Biermann T, Stark C et al (2013) Changes of cytokine profiles during electroconvulsive therapy in patients with major depression. J ECT 29(3):162–169. https://doi.org/10.1097/YCT.0b013e3182843942
doi: 10.1097/YCT.0b013e3182843942
Sanacora G, Mason GF, Rothman DL, Hyder F, Ciarcia JJ, Ostroff RB et al (2003) Increased cortical GABA concentrations in depressed patients receiving ECT. Am J Psychiatry 160(3):577–579. Available from: http://journals.psychiatryonline.org/article.aspx?articleid=176102
Sheline YI, Price JL, Yan Z, Mintun MA (2010) Resting-state functional MRI in depression unmasks increased connectivity between networks via the dorsal nexus. Proc Natl Acad Sci U S A 107(24):11020–11025. https://doi.org/10.1073/pnas.1000446107
doi: 10.1073/pnas.1000446107
Tendolkar I, van Beek M, van Oostrom I, Mulder M, Janzing J, Voshaar RO et al (2013) Electroconvulsive therapy increases hippocampal and amygdala volume in therapy refractory depression: a longitudinal pilot study. Psychiatry Res 214(3):197–203
UK ECT Review Group (2003) Efficacy and safety of electroconvulsive therapy in depressive disorders: a systematic review and meta-analysis. Lancet 361(9360):799–808. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12642045
Van Oostrom I, van Eijndhoven P, Butterbrod E et al (2018) Decreased cognitive functioning after electroconvulsive therapy is related to increased hippocampal volume: exploring the role of brain plasticity. J ECT 34(2):117–123. https://doi.org/10.1097/YCT.0000000000000483
doi: 10.1097/YCT.0000000000000483
van Velzen LS, Kelly S, Isaev D et al (2020) White matter disturbances in major depressive disorder: a coordinated analysis across 20 international cohorts in the ENIGMA MDD working group. Mol Psychiatry 25(7):1511–1525
Wade BS, Joshi SH, Njau S et al (2016) Effect of electroconvulsive therapy on striatal morphometry in major depressive disorder. Neuropsychopharmacology 41(10):2481–2491. https://doi.org/10.1038/npp.2016.48
doi: 10.1038/npp.2016.48
Wakana S, Jiang H, Nagae-Poetscher LM, van Zijl PC, Mori S (2004) Fiber tract-based atlas of human white matter anatomy. Radiology 230(1):77–87
Wang J, Wei Q, Wang L et al (2018) Functional reorganization of intra- and internetwork connectivity in major depressive disorder after electroconvulsive therapy. Hum Brain Mapp 39(3):1403–1411. https://doi.org/10.1002/hbm.23928
doi: 10.1002/hbm.23928
Wei Q, Tian Y, Yu Y et al (2014) Modulation of interhemispheric functional coordination in electroconvulsive therapy for depression. Transl Psychiatry 4(9):e453
Wei Q, Bai T, Chen Y et al (2018) The changes of functional connectivity strength in electroconvulsive therapy for depression: a longitudinal study. Front Neurosci 12:661. Published 2018 Sep 25. https://doi.org/10.3389/fnins.2018.00661
doi: 10.3389/fnins.2018.00661
Williams MR, Sharma P, Macdonald C, Pearce RKB, Hirsch SR, Maier M (2019) Axonal myelin decrease in the splenium in major depressive disorder. Eur Arch Psychiatry Clin Neurosci 269(4):387–395
Xu K, Jiang W, Ren L et al (2013) Impaired interhemispheric connectivity in medication-naive patients with major depressive disorder. J Psychiatry Neurosci 38(1):43–48
Ye T, Peng J, Nie B et al (2012) Altered functional connectivity of the dorsolateral prefrontal cortex in first-episode patients with major depressive disorder. Eur J Radiol 81(12):4035–4040. https://doi.org/10.1016/j.ejrad.2011.04.058
doi: 10.1016/j.ejrad.2011.04.058
Yrondi A, Sporer M, Péran P, Schmitt L, Arbus C, Sauvaget A (2018) Electroconvulsive therapy, depression, the immune system and inflammation: a systematic review. Brain Stimul 11(1):29–51. https://doi.org/10.1016/j.brs.2017.10.013
doi: 10.1016/j.brs.2017.10.013
Yrondi A, Péran P, Sauvaget A, Schmitt L, Arbus C (2019) Structural-functional brain changes in depressed patients during and after electroconvulsive therapy. Acta Neuropsychiatr 30(1):17–28. https://doi.org/10.1017/neu.2016.62
doi: 10.1017/neu.2016.62
Zeng J, Luo Q, Du L et al (2015) Reorganization of anatomical connectome following electroconvulsive therapy in major depressive disorder. Neural Plast 2015:271674
Zuo N, Fang J, Lv X et al (2012) White matter abnormalities in major depression: a tract-based spatial statistics and rumination study. PloS One 7(5):e37561