Short-Term Memory Deficit Associates with miR-153-3p Upregulation in the Hippocampus of Middle-Aged Mice.

Ageing High-load short-term memory Hippocampus MicroRNAs miR-153-3p

Journal

Molecular neurobiology
ISSN: 1559-1182
Titre abrégé: Mol Neurobiol
Pays: United States
ID NLM: 8900963

Informations de publication

Date de publication:
15 Nov 2023
Historique:
received: 07 09 2023
accepted: 03 11 2023
medline: 15 11 2023
pubmed: 15 11 2023
entrez: 14 11 2023
Statut: aheadofprint

Résumé

The early stages of ageing are a critical time window in which the ability to detect and identify precocious molecular and cognitive markers can make the difference in determining a healthy vs unhealthy course of ageing. Using the 6-different object task (6-DOT), a highly demanding hippocampal-dependent recognition memory task, we classified a population of middle-aged (12-month-old) CD1 male mice in Impaired and Unimpaired based on their short-term memory. This approach led us to identify a different microRNAs expression profile in the hippocampus of Impaired mice compared to Unimpaired ones. Among the dysregulated microRNAs, miR-153-3p was upregulated in the hippocampus of Impaired mice and appeared of high interest for its putative target genes and their possible implication in memory-related synaptic plasticity. We showed that intra-hippocampal injection of the miR-153-3p mimic in adult (3-month-old) mice is sufficient to induce a short-term memory deficit similar to that observed in middle-aged Impaired mice. Overall, these findings unravel a novel role for hippocampal miR-153-3p in modulating short-term memory that could be exploited to prevent early cognitive deficits in ageing.

Identifiants

pubmed: 37964090
doi: 10.1007/s12035-023-03770-5
pii: 10.1007/s12035-023-03770-5
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Alzheimer's Association
ID : SAGA-17-418745
Pays : United States

Informations de copyright

© 2023. The Author(s).

Références

López-Otín C, Blasco MA, Partridge L et al (2023) Hallmarks of aging: an expanding universe. Cell 186:243–278. https://doi.org/10.1016/j.cell.2022.11.001
doi: 10.1016/j.cell.2022.11.001 pubmed: 36599349
Anderson ND (2019) State of the science on mild cognitive impairment (MCI). CNS Spectr 24:78–87. https://doi.org/10.1017/S1092852918001347
doi: 10.1017/S1092852918001347 pubmed: 30651152
Petersen RC, Smith GE, Waring SC et al (1999) Mild cognitive impairment. Arch Gen Psychiatry 56:303–308
Miller GA (1956) The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychol Rev 63:81–97
doi: 10.1037/h0043158 pubmed: 13310704
Cowan N (2001) The magical number 4 in short-term memory: a reconsideration of mental storage capacity. Behav Brain Sci 24:87–114. https://doi.org/10.1017/S0140525X01003922
doi: 10.1017/S0140525X01003922 pubmed: 11515286
Lueptow LM (2017) Novel object recognition test for the investigation of learning and memory in mice. J Vis Exp 2017:1–9. https://doi.org/10.3791/55718
doi: 10.3791/55718
Beason-Held LL, Rosene DL, Killiany RJ, Moss MB (1999) Hippocampal formation lesions produce memory impairment in the rhesus monkey. Hippocampus 9:562–574
doi: 10.1002/(SICI)1098-1063(1999)9:5<562::AID-HIPO10>3.0.CO;2-X pubmed: 10560927
Sannino S, Russo F, Torromino G et al (2012) Role of the dorsal hippocampus in object memory load. Learn Mem 19:211–218
doi: 10.1101/lm.025213.111 pubmed: 22523415
De Risi M, Torromino G, Tufano M, et al (2020) Mechanisms by which autophagy regulates memory capacity in ageing. Aging Cell 1–15. https://doi.org/10.1111/acel.13189
Baddeley A (2000) The episodic buffer: a new component of working memory? Trends Cogn Sci 4:417–423
doi: 10.1016/S1364-6613(00)01538-2 pubmed: 11058819
Chai WJ, Abd Hamid AI, Abdullah JM (2018) Working memory from the psychological and neurosciences perspectives: a review. Front Psychol 9:1–16. https://doi.org/10.3389/fpsyg.2018.00401
doi: 10.3389/fpsyg.2018.00401
Ruchkin DS, Grafman J, Cameron K, Berndt RS (2003) Working memory retention systems: a state of activated long-term memory. Behav Brain Sci 26:709–728
doi: 10.1017/S0140525X03000165 pubmed: 15377128
Barker GRI, Warburton EC (2011) When is the hippocampus involved in recognition memory? J Neurosci 31:10721–10731. https://doi.org/10.1523/JNEUROSCI.6413-10.2011
doi: 10.1523/JNEUROSCI.6413-10.2011 pubmed: 21775615 pmcid: 6622630
Zola SM, Squire LR, Teng E et al (2000) Impaired recognition memory in monkeys after damage limited to the hippocampal region. J Neurosci 20:451–463. https://doi.org/10.1523/jneurosci.20-01-00451.2000
doi: 10.1523/jneurosci.20-01-00451.2000 pubmed: 10627621 pmcid: 6774137
Levy DA, Hopkins RO, Squire LR (2004) Impaired odor recognition memory in patients with hippocampal lesions. Learn Mem 11:794–796
doi: 10.1101/lm.82504 pubmed: 15537736 pmcid: 534708
Raihan O, Brishti A, Molla MR et al (2018) The age-dependent elevation of miR-335-3p leads to reduced cholesterol and impaired memory in brain. Neuroscience 390:160–173. https://doi.org/10.1016/j.neuroscience.2018.08.003
doi: 10.1016/j.neuroscience.2018.08.003 pubmed: 30125687
Inukai S, de Lencastre A, Turner M, Slack F (2012) Novel microRNAs differentially expressed during aging in the mouse brain. PLoS One 7. https://doi.org/10.1371/journal.pone.0040028
Smith-Vikos T, Slack FJ (2012) MicroRNAs and their roles in aging. J Cell Sci 125:7–17. https://doi.org/10.1242/jcs.099200
doi: 10.1242/jcs.099200 pubmed: 22294612 pmcid: 3269020
Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A (2004) Identification of mammalian microRNA host genes and transcription units. Genome Res 14:1902–1910. https://doi.org/10.1101/gr.2722704
doi: 10.1101/gr.2722704 pubmed: 15364901 pmcid: 524413
Konopka W, Kiryk A, Novak M et al (2010) MicroRNA loss enhances learning and memory in mice. J Neurosci 30:14835–14842. https://doi.org/10.1523/JNEUROSCI.3030-10.2010
doi: 10.1523/JNEUROSCI.3030-10.2010 pubmed: 21048142 pmcid: 6633640
Capitano F, Camon J, Licursi V et al (2017) MicroRNA-335-5p modulates spatial memory and hippocampal synaptic plasticity. Neurobiol Learn Mem 139:63–68
doi: 10.1016/j.nlm.2016.12.019 pubmed: 28039088
Capitano F, Camon J, Ferretti V et al (2016) microRNAs modulate spatial memory in the hippocampus and in the ventral striatum in a region-specific manner. Mol Neurobiol 53:4618–4630. https://doi.org/10.1007/s12035-015-9398-5
doi: 10.1007/s12035-015-9398-5 pubmed: 26307611
Mannironi C, Camon J, De Vito F et al (2013) Acute stress alters amygdala microRNA miR-135a and miR-124 expression: inferences for corticosteroid dependent stress response. PLoS ONE 8:1–11. https://doi.org/10.1371/journal.pone.0073385
doi: 10.1371/journal.pone.0073385
Smalheiser NR, Lugli G, Lenon AL et al (2010) Olfactory discrimination training up-regulates and reorganizes expression of microRNAs in adult mouse hippocampus. ASN Neuro 2:39–48. https://doi.org/10.1042/AN20090055
doi: 10.1042/AN20090055
Mannironi C, Biundo A, Rajendran S et al (2018) miR-135a regulates synaptic transmission and anxiety-like behavior in amygdala. Mol Neurobiol 55:3301–3315. https://doi.org/10.1007/s12035-017-0564-9
doi: 10.1007/s12035-017-0564-9 pubmed: 28488209
Schratt GM, Tuebing F, Nigh EA et al (2006) A brain-specific microRNA regulates dendritic spine development. Nature 439:283–289. https://doi.org/10.1038/nature04367
doi: 10.1038/nature04367 pubmed: 16421561
Edbauer D, Neilson JR, Foster KA et al (2010) Regulation of synaptic structure and function by FMRP-associated MicroRNAs miR-125b and miR-132. Neuron 65:373–384. https://doi.org/10.1016/j.neuron.2010.01.005
doi: 10.1016/j.neuron.2010.01.005 pubmed: 20159450 pmcid: 5018398
Daswani R, Gilardi C, Soutschek M et al (2022) MicroRNA-138 controls hippocampal interneuron function and short-term memory in mice. Elife 11:1–24. https://doi.org/10.7554/eLife.74056
doi: 10.7554/eLife.74056
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262
doi: 10.1006/meth.2001.1262 pubmed: 11846609
Sticht C, La TCD, Parveen A, Gretz N (2018) miRWalk: an online resource for prediction of microRNA binding sites. PLoS ONE 13:e0206239. https://doi.org/10.1371/journal.pone.0206239
doi: 10.1371/journal.pone.0206239 pubmed: 30335862 pmcid: 6193719
Szklarczyk D, Gable AL, Lyon D et al (2019) STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 47:D607–D613. https://doi.org/10.1093/nar/gky1131
doi: 10.1093/nar/gky1131 pubmed: 30476243
Ge SX, Jung D, Yao R (2020) ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics 36:2628–2629. https://doi.org/10.1101/082511.Lai
doi: 10.1101/082511.Lai pubmed: 31882993
Zheng K, Hu F, Zhou Y et al (2021) miR-135a-5p mediates memory and synaptic impairments via the Rock2/Adducin1 signaling pathway in a mouse model of Alzheimer’s disease. Nat Commun 12:1–16. https://doi.org/10.1038/s41467-021-22196-y
doi: 10.1038/s41467-021-22196-y
Zhang S, Yan ML, Yang L et al (2020) MicroRNA-153 impairs hippocampal synaptic vesicle trafficking via downregulation of synapsin I in rats following chronic cerebral hypoperfusion. Exp Neurol 332:113389. https://doi.org/10.1016/j.expneurol.2020.113389
doi: 10.1016/j.expneurol.2020.113389 pubmed: 32580014
Qiu S, Liu B, Mo Y et al (2020) MicroRNA-153-3p increases autophagy in sevoflurane-preconditioned mice to protect against ischaemic/reperfusion injury after knee arthroplasty. J Cell Mol Med 24:5330–5340. https://doi.org/10.1111/jcmm.15188
doi: 10.1111/jcmm.15188 pubmed: 32239627 pmcid: 7205820
Doxakis E (2010) Post-transcriptional regulation of α-synuclein expression by mir-7 and mir-153. J Biol Chem 285:12726–12734. https://doi.org/10.1074/jbc.M109.086827
doi: 10.1074/jbc.M109.086827 pubmed: 20106983 pmcid: 2857101
Li Y, Peng B, Li Y, et al (2022) MiR-203a-3p/153–3p improves cognitive impairments induced by ischemia/reperfusion via blockade of SRC-mediated MAPK signaling pathway in ischemic stroke. Chem Biol Interact 358. https://doi.org/10.1016/j.cbi.2022.109900
Yan ML, Zhang S, Zhao HM et al (2020) MicroRNA-153 impairs presynaptic plasticity by blocking vesicle release following chronic brain hypoperfusion. Cell Commun Signal 18:1–16. https://doi.org/10.1186/s12964-020-00551-8
doi: 10.1186/s12964-020-00551-8
Selkoe DJ (2002) Alzheimer’s disease is a synaptic failure. Science 298(5594):789–791. https://doi.org/10.1126/science.1074069
doi: 10.1126/science.1074069 pubmed: 12399581
Forner S, Baglietto-Vargas D, Martini AC et al (2017) Synaptic impairment in Alzheimer’s disease: a dysregulated symphony. Trends Neurosci 40:347–357. https://doi.org/10.1016/j.tins.2017.04.002
doi: 10.1016/j.tins.2017.04.002 pubmed: 28494972
Berridge MJ (1998) Neuronal calcium signaling. Neuron 21:13–26. https://doi.org/10.1016/0166-2236(87)90099-3
doi: 10.1016/0166-2236(87)90099-3 pubmed: 9697848
Kawamoto EM, Vivar C, Camandola S (2012) Physiology and pathology of calcium signaling in the brain. Front Pharmacol 3:1–17. https://doi.org/10.3389/fphar.2012.00061
doi: 10.3389/fphar.2012.00061
Paschou M, Papazafiri P, Charalampous C, et al (2022) Neuronal microRNAs safeguard ER Ca2+ homeostasis and attenuate the unfolded protein response upon stress. Springer International Publishing
Xu H, Abuhatzira L, Carmona GN et al (2015) The Ia-2β intronic miRNA, miR-153, is a negative regulator of insulin and dopamine secretion through its effect on the Cacna1c gene in mice. Diabetologia 58:2298–2306. https://doi.org/10.1007/s00125-015-3683-8
doi: 10.1007/s00125-015-3683-8 pubmed: 26141787 pmcid: 6754265
Jiang Y, Xu B, Chen J et al (2018) Micro-RNA-137 inhibits tau hyperphosphorylation in Alzheimer’s disease and targets the CACNA1C gene in transgenic mice and human neuroblastoma SH-SY5Y cells. Med Sci Monit 24:5635–5644. https://doi.org/10.12659/MSM.908765
doi: 10.12659/MSM.908765 pubmed: 30102687 pmcid: 6104547
Long JM, Ray B, Lahiri DK (2012) MicroRNA-153 physiologically inhibits expression of amyloid- precursor protein in cultured human fetal brain cells and is dysregulated in a subset of alzheimer disease patients. J Biol Chem 287:31298–31310. https://doi.org/10.1074/jbc.M112.366336
doi: 10.1074/jbc.M112.366336 pubmed: 22733824 pmcid: 3438960
Liang C, Zhu H, Xu Y et al (2012) MicroRNA-153 negatively regulates the expression of amyloid precursor protein and amyloid precursor-like protein 2. Brain Res 1455:103–113. https://doi.org/10.1016/j.brainres.2011.10.051
doi: 10.1016/j.brainres.2011.10.051 pubmed: 22510281
Wischik CM, Harrington CR, Storey JMD (2014) Tau-aggregation inhibitor therapy for Alzheimer’s disease. Biochem Pharmacol 88:529–539. https://doi.org/10.1016/j.bcp.2013.12.008
doi: 10.1016/j.bcp.2013.12.008 pubmed: 24361915

Auteurs

Francesca Stabile (F)

Department of Biology and Biotechnologies "Charles Darwin" (BBCD), Sapienza University of Rome, Rome, Italy.
Centre for Research in Neurobiology Daniel Bovet (CRiN), Sapienza University of Rome, Rome, Italy.

G Torromino (G)

Department of Biology and Biotechnologies "Charles Darwin" (BBCD), Sapienza University of Rome, Rome, Italy.
Department of Humanistic Studies, University of Naples Federico II, Naples, Italy.

S Rajendran (S)

Department of Biology and Biotechnologies "Charles Darwin" (BBCD), Sapienza University of Rome, Rome, Italy.
Centre for Research in Neurobiology Daniel Bovet (CRiN), Sapienza University of Rome, Rome, Italy.

G Del Vecchio (G)

Department of Biology and Biotechnologies "Charles Darwin" (BBCD), Sapienza University of Rome, Rome, Italy.

C Presutti (C)

Department of Biology and Biotechnologies "Charles Darwin" (BBCD), Sapienza University of Rome, Rome, Italy.

C Mannironi (C)

Institute of Molecular Biology and Pathology, c/o Department of Biology and Biotechnology, National Research Council, Sapienza University of Rome, Rome, Italy.

E De Leonibus (E)

Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Monterotondo (Rome), Italy.
Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli (Naples), Italy.

A Mele (A)

Department of Biology and Biotechnologies "Charles Darwin" (BBCD), Sapienza University of Rome, Rome, Italy. andrea.mele@uniroma1.it.
Centre for Research in Neurobiology Daniel Bovet (CRiN), Sapienza University of Rome, Rome, Italy. andrea.mele@uniroma1.it.

A Rinaldi (A)

Department of Biology and Biotechnologies "Charles Darwin" (BBCD), Sapienza University of Rome, Rome, Italy. arianna.rinaldi@uniroma1.it.
Centre for Research in Neurobiology Daniel Bovet (CRiN), Sapienza University of Rome, Rome, Italy. arianna.rinaldi@uniroma1.it.

Classifications MeSH