A Novel Molecular Classification Method for Glioblastoma Based on Tumor Cell Differentiation Trajectories.
Journal
Stem cells international
ISSN: 1687-966X
Titre abrégé: Stem Cells Int
Pays: United States
ID NLM: 101535822
Informations de publication
Date de publication:
2023
2023
Historique:
received:
30
08
2022
revised:
29
09
2022
accepted:
13
10
2022
medline:
15
11
2023
pubmed:
15
11
2023
entrez:
15
11
2023
Statut:
epublish
Résumé
The latest 2021 WHO classification redefines glioblastoma (GBM) as the hierarchical reporting standard by eliminating glioblastoma, IDH-mutant and only retaining the tumor entity of "glioblastoma, IDH-wild type." Knowing that subclassification of tumors based on molecular features is supposed to facilitate the therapeutic choice and increase the response rate in cancer patients, it is necessary to carry out molecular classification of the newly defined GBM. Although differentiation trajectory inference based on single-cell sequencing (scRNA-seq) data holds great promise for identifying cell heterogeneity, it has not been used in the study of GBM molecular classification. Single-cell transcriptome sequencing data from 10 GBM samples were used to identify molecular classification based on differentiation trajectories. The expressions of identified features were validated by public bulk RNA-sequencing data. Clinical feasibility of the classification system was examined in tissue samples by immunohistochemical (IHC) staining and immunofluorescence, and their clinical significance was investigated in public cohorts and clinical samples with complete clinical follow-up information. By analyzing scRNA-seq data of 10 GBM samples, four differentiation trajectories from the glioblastoma stem cell-like (GSCL) cluster were identified, based on which malignant cells were classified into five characteristic subclusters. Each cluster exhibited different potential drug sensitivities, pathways, functions, and transcriptional modules. The classification model was further examined in TCGA and CGGA datasets. According to the different abundance of five characteristic cell clusters, the patients were classified into five groups which we named Ac-G, Class-G, Neo-G, Opc-G, and Undiff-G groups. It was found that the Undiff-G group exhibited the worst overall survival (OS) in both TCGA and CGGA cohorts. In addition, the classification model was verified by IHC staining in 137 GBM samples to further clarify the difference in OS between the five groups. Furthermore, the novel biomarkers of glioblastoma stem cells (GSCs) were also described. In summary, we identified five classifications of GBM and found that they exhibited distinct drug sensitivities and different prognoses, suggesting that the new grouping system may be able to provide important prognostic information and have certain guiding significance for the treatment of GBM, and identified the GSCL cluster in GBM tissues and described its characteristic program, which may help develop new potential therapeutic targets for GSCs in GBM.
Identifiants
pubmed: 37964983
doi: 10.1155/2023/2826815
pmc: PMC10643041
doi:
Types de publication
Journal Article
Langues
eng
Pagination
2826815Informations de copyright
Copyright © 2023 Guanghao Zhang et al.
Déclaration de conflit d'intérêts
The authors declare that they have no competing interests.
Références
Natl Sci Rev. 2020 Aug;7(8):1306-1318
pubmed: 34692159
J Neurooncol. 2020 Apr;147(2):297-307
pubmed: 32157552
Nat Commun. 2020 May 8;11(1):2285
pubmed: 32385277
Science. 2014 Jun 20;344(6190):1396-401
pubmed: 24925914
Cell. 2016 Jan 28;164(3):550-63
pubmed: 26824661
J Exp Clin Cancer Res. 2017 Jun 24;36(1):86
pubmed: 28646927
Cell Stem Cell. 2012 Nov 2;11(5):649-62
pubmed: 23122289
Cancer Sci. 2021 Sep;112(9):3455-3468
pubmed: 34159686
Immunity. 2016 Mar 15;44(3):439-449
pubmed: 26982352
Science. 2012 Nov 23;338(6110):1080-4
pubmed: 23087000
Sci Rep. 2019 Jul 22;9(1):10555
pubmed: 31332251
J Cancer Res Clin Oncol. 2021 Jun;147(6):1843-1856
pubmed: 33399987
Cell Rep. 2018 Mar 27;22(13):3480-3492
pubmed: 29590617
Nat Immunol. 2019 Sep;20(9):1100-1109
pubmed: 31358997
Front Genet. 2014 Nov 04;5:383
pubmed: 25408701
J Cell Mol Med. 2019 Jan;23(1):281-292
pubmed: 30467961
Cancer Cell. 2010 Jan 19;17(1):98-110
pubmed: 20129251
World J Stem Cells. 2021 Jul 26;13(7):877-893
pubmed: 34367482
Cell Mol Neurobiol. 2016 Oct;36(7):1197-208
pubmed: 26971793
Nat Commun. 2021 Jan 13;12(1):362
pubmed: 33441552
Int J Mol Sci. 2019 Mar 06;20(5):
pubmed: 30845661
Biochem Biophys Res Commun. 2018 Jun 7;500(3):645-649
pubmed: 29678571
Cancer Cell. 2017 Jul 10;32(1):42-56.e6
pubmed: 28697342
Trends Neurosci. 2019 Apr;42(4):263-277
pubmed: 30770136
Neuro Oncol. 2020 Oct 30;22(12 Suppl 2):iv1-iv96
pubmed: 33123732
Clin Cancer Res. 2014 Dec 15;20(24):6304-13
pubmed: 25338498
Semin Cancer Biol. 2018 Dec;53:201-211
pubmed: 30031763
Proc Natl Acad Sci U S A. 2020 Jan 28;117(4):2020-2031
pubmed: 31937660
Biochem Biophys Res Commun. 2010 Feb 5;392(2):201-6
pubmed: 20060810
Drug Resist Updat. 2019 Jan;42:35-45
pubmed: 30877905
Genome Biol. 2020 Sep 15;21(1):247
pubmed: 32933554
Nat Rev Clin Oncol. 2021 Mar;18(3):170-186
pubmed: 33293629
Front Immunol. 2021 Feb 01;11:591054
pubmed: 33597944
Mol Oncol. 2019 Dec;13(12):2588-2603
pubmed: 31487431
Br J Cancer. 2009 Dec 15;101(12):1995-2004
pubmed: 19904263
Neural Dev. 2018 May 11;13(1):8
pubmed: 29751817
Ann Oncol. 2009 Sep;20(9):1596-1603
pubmed: 19491283
Genome Med. 2021 Jul 9;13(1):111
pubmed: 34238352
Acta Neuropathol. 2017 Sep;134(3):507-516
pubmed: 28401334
Int J Mol Sci. 2021 Apr 08;22(8):
pubmed: 33917954
Cancer Res. 2020 Dec 15;80(24):5449-5458
pubmed: 32978169
Biomedicines. 2019 Sep 09;7(3):
pubmed: 31505812
Paediatr Drugs. 2010 Jun;12(3):141-53
pubmed: 20481644
Curr Opin Genet Dev. 2019 Feb;54:25-32
pubmed: 30921673
Cell Death Dis. 2016 Apr 28;7:e2209
pubmed: 27124583
Nat Genet. 2021 Sep;53(9):1334-1347
pubmed: 34493872
Stem Cell Rev Rep. 2021 Oct;17(5):1855-1873
pubmed: 33982246
N Engl J Med. 2008 Jul 31;359(5):492-507
pubmed: 18669428
Neuropathol Appl Neurobiol. 2018 Feb;44(2):185-206
pubmed: 28767130
Mol Cancer. 2020 Oct 8;19(1):147
pubmed: 33032611
Future Oncol. 2018 Apr;14(8):781-791
pubmed: 29521526
Neuro Oncol. 2012 Dec;14(12):1432-40
pubmed: 23090983
Nat Commun. 2020 Mar 5;11(1):1201
pubmed: 32139671
J Exp Clin Cancer Res. 2011 Dec 20;30:112
pubmed: 22185299
Int J Biol Sci. 2020 Oct 17;16(16):3149-3162
pubmed: 33162821
Int J Mol Sci. 2021 Jun 15;22(12):
pubmed: 34203727
Neuro Oncol. 2021 Aug 2;23(8):1231-1251
pubmed: 34185076
Int J Mol Sci. 2019 Mar 14;20(6):
pubmed: 30875728
J Cancer Res Clin Oncol. 2021 Oct;147(10):2969-2982
pubmed: 34170383
Oncogene. 2022 Jan;41(5):613-621
pubmed: 34764443
Acta Neuropathol. 2016 Jun;131(6):803-20
pubmed: 27157931
Cancer Treat Rev. 2012 Oct;38(6):698-707
pubmed: 22178455
Cancer Res. 2000 Mar 1;60(5):1383-7
pubmed: 10728703
Stem Cell Rev Rep. 2019 Dec;15(6):755-773
pubmed: 31863337
Int J Mol Sci. 2020 Dec 31;22(1):
pubmed: 33396284
J Clin Invest. 2019 Apr 8;129(5):2043-2055
pubmed: 30958800
J Immunother Cancer. 2021 Aug;9(8):
pubmed: 34413167
N Engl J Med. 2005 Mar 10;352(10):987-96
pubmed: 15758009
Genes Dev. 2015 Jun 15;29(12):1203-17
pubmed: 26109046
Int J Mol Sci. 2020 Aug 07;21(16):
pubmed: 32784716