Electron impact electronic excitation of benzene: Theory and experiment.
Journal
The Journal of chemical physics
ISSN: 1089-7690
Titre abrégé: J Chem Phys
Pays: United States
ID NLM: 0375360
Informations de publication
Date de publication:
21 Nov 2023
21 Nov 2023
Historique:
received:
19
08
2023
accepted:
03
10
2023
medline:
15
11
2023
pubmed:
15
11
2023
entrez:
15
11
2023
Statut:
ppublish
Résumé
We report experimental differential cross sections (DCSs) for electron impact excitation of bands I to V of benzene at incident energies of 10, 12.5, 15, and 20 eV. They are compared to calculations using the Schwinger multichannel method while accounting for up to 437 open channels. For intermediate scattering angles, the calculations reveal that the most intense band (V) emerges from surprisingly similar contributions from all its underlying states (despite some preference for the dipole-allowed transitions). They further shed light on intricate multichannel couplings between the states of bands I to V and higher-lying Rydberg states. In turn, the measurements support a vibronic coupling mechanism for excitation of bands II and IV and also show an unexpected forward peak in the spin-forbidden transition accounting for band III. Overall, there is decent agreement between theory and experiment at intermediate angles and at lower energies and in terms of the relative DCSs of the five bands. Discrepancies between the present and previous experiment regarding bands IV and V draw attention to the need of additional experimental investigations. We also report measured DCSs for vibrational excitation of combined C-H stretching modes.
Identifiants
pubmed: 37966005
pii: 2921431
doi: 10.1063/5.0173024
pii:
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2023 Author(s). Published under an exclusive license by AIP Publishing.