Inter- and intraindividual variability in virtual single-tooth implant positioning.

alveolar ridge computer-assisted dental implants digital digital imaging image processing implant planning

Journal

Clinical oral implants research
ISSN: 1600-0501
Titre abrégé: Clin Oral Implants Res
Pays: Denmark
ID NLM: 9105713

Informations de publication

Date de publication:
15 Nov 2023
Historique:
revised: 28 10 2023
received: 27 07 2023
accepted: 01 11 2023
medline: 15 11 2023
pubmed: 15 11 2023
entrez: 15 11 2023
Statut: aheadofprint

Résumé

The purpose of this prospective study was to determine the inter- and intraindividual variability in virtual single-tooth implant positioning based on the level of expertise, specialty, total time spent, and the use of a prosthetic tooth setup. Virtual implant planning was performed on matched pre- and post-extraction intraoral scans (IOS), and cone-beam computed tomography scans of 15 patients. Twelve individual examiners, involving six novices and experts from oral surgery and prosthodontics positioned the implants, first based on anatomical landmarks utilizing only the post-extraction, and second with the use of the pre-extraction IOS as a setup. The time for implant positioning was recorded. After 1 month, all virtual plannings were performed again. The individual implant positions were superimposed to obtain 3D deviations using a software algorithm. An interindividual variability with mean angular, crestal, and apical positional deviations of 3.8 ± 1.94°, 1.11 ± 0.55, and 1.54 ± 0.66 mm, respectively, was found. When assessing intraindividual variability, deviations of 3.28 ± 1.99°, 0.78 ± 0.46, and 1.12 ± 0.61 mm, respectively, were observed. Implants planned by experts exhibited statistically lower deviations compared to those planned by novices. Longer planning times resulted in lower deviations in the experts' group but not in the novices. Oral surgeons demonstrated lower crestal, but not angular and apical deviations than prosthodontists. The use of a setup only led to minor adjustments. Substantial inter- and intraindividual variability exists during implant positioning utilizing specialized software planning. The level of expertise and the time invested influenced the deviations of the implant position during the planning sequence.

Identifiants

pubmed: 37966052
doi: 10.1111/clr.14203
doi:

Types de publication

Journal Article

Langues

eng

Informations de copyright

© 2023 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

Références

Armstrong, B. A., Dutescu, I. A., Tung, A., Carter, D. N., Trbovich, P. L., Wong, S., Saposnik, G., & Grantcharov, T. (2023). Cognitive biases in surgery: Systematic review. British Journal of Surgery, 110, 645-654. https://doi.org/10.1093/BJS/ZNAD004
Buser, D., Martin, W., & Belser, U. C. (2004). Optimizing esthetics for implant restorations in the anterior maxilla: Anatomic and surgical considerations. The International Journal of Oral & Maxillofacial Implants, 19 suppl, 43-61.
Buser, D., Sennerby, L., & De Bruyn, H. (2017). Modern implant dentistry based on osseointegration: 50 years of progress, current trends and open questions. Periodontology 2000, 73(1), 7-21. https://doi.org/10.1111/prd.12185
Chen, S. T., Buser, D., Sculean, A., & Belser, U. C. (2023). Complications and treatment errors in implant positioning in the aesthetic zone: Diagnosis and possible solutions. Periodontology 2000, 92(1), 220-234. https://doi.org/10.1111/prd.12474
Chen, S. T., Darby, I. B., & Reynolds, E. C. (2007). A prospective clinical study of non-submerged immediate implants: Clinical outcomes and esthetic results. Clinical Oral Implants Research, 18(5), 552-562. https://doi.org/10.1111/J.1600-0501.2007.01388.X
Chen, Z., Li, J., Ceolin Meneghetti, P., Galli, M., Mendonça, G., & Wang, H.-L. (2022). Does guided level (fully or partially) influence implant placement accuracy at post-extraction sockets and healed sites? An in vitro study. Clinical Oral Investigations, 26(8), 5449-5458. https://doi.org/10.1007/s00784-022-04512-y
Cooper, L. F. (2015). Prosthodontic complications related to non-optimal dental implant placement. In Dental Implant Complications: Etiology, Prevention, and Treatment (2nd ed., pp. 539-558). John Wiley & Sons, Inc. https://doi.org/10.1002/9781119140474.CH24
Couso-Queiruga, E., Spörri, L. A., Sabatini, G. P., Chappuis, V., Abou-Ayash, S., Yilmaz, B., & Raabe, C. (2023). Accuracy of implant placement in the posterior maxillary region depending on the alveolar residual bone height and sinus morphology: An in vitro study. Clinical Oral Implants Research, 1-10. https://doi.org/10.1111/clr.14142
Dulla, F. A., Couso-Queiruga, E., Chappuis, V., Yilmaz, B., Abou-Ayash, S., & Raabe, C. (2023). Influence of alveolar ridge morphology and guide-hole design on the accuracy of static computer-assisted implant surgery with two implant macro-designs: An in vitro study. Journal of Dentistry, 130, 104426. https://doi.org/10.1016/j.jdent.2023.104426
El Kholy, K., Ebenezer, S., Wittneben, J. G., Lazarin, R., Rousson, D., & Buser, D. (2019). Influence of implant macrodesign and insertion connection technology on the accuracy of static computer-assisted implant surgery. Clinical Implant Dentistry and Related Research, 21(5), 1073-1079. https://doi.org/10.1111/cid.12836
El Kholy, K., Janner, S. F. M., Schimmel, M., & Buser, D. (2019). The influence of guided sleeve height, drilling distance, and drilling key length on the accuracy of static computer-assisted implant surgery. Clinical Implant Dentistry and Related Research, 21(1), 101-107. https://doi.org/10.1111/cid.12705
El Kholy, K., Lazarin, R., Janner, S. F. M., Faerber, K., Buser, R., & Buser, D. (2019). Influence of surgical guide support and implant site location on accuracy of static computer-assisted implant surgery. Clinical Oral Implants Research, 30(11), 1067-1075. https://doi.org/10.1111/clr.13520
Esteban, M. O., Deglow, E. R., Zubizarreta-Macho, Á., & Montero, S. H. (2020). Influence of the digital mock-up and experience on the ability to determine the prosthetically correct dental implant position during digital planning: An in vitro study. Journal of Clinical Medicine, 9(1), 5-11. https://doi.org/10.3390/jcm9010048
Greenstein, G., Cavallaro, J., Romanos, G., & Tarnow, D. (2008). Clinical recommendations for avoiding and managing surgical complications associated with implant dentistry: A review. Journal of Periodontology, 79(8), 1317-1329. https://doi.org/10.1902/JOP.2008.070067
Greenstein, G., & Tarnow, D. (2006). The mental foramen and nerve: Clinical and anatomical factors related to dental implant placement: A literature review. Journal of Periodontology, 77(12), 1933-1943. https://doi.org/10.1902/jop.2006.060197
Han, H., Kim, P., Kim, K., Kim, S., Ku, Y., & Cho, Y. (2022). Dental implant proximity to adjacent teeth: A retrospective study. Clinical Implant Dentistry and Related Research, 24(6), 733-739. https://doi.org/10.1111/cid.13132
Jemt, T., Olsson, M., Renouard, F., Stenport, V., & Friberg, B. (2016). Early implant failures related to individual surgeons: An analysis covering 11,074 operations performed during 28 years. Clinical Implant Dentistry and Related Research, 18(5), 861-872. https://doi.org/10.1111/CID.12379
Jivraj, S., & Chee, W. (2006). Treatment planning of implants in posterior quadrants. British Dental Journal, 201(1), 13-23. https://doi.org/10.1038/sj.bdj.4813766
Jorba-García, A., González-Barnadas, A., Camps-Font, O., Figueiredo, R., & Valmaseda-Castellón, E. (2021). Accuracy assessment of dynamic computer-aided implant placement: A systematic review and meta-analysis. Clinical Oral Investigations, 25(5), 2479-2494. https://doi.org/10.1007/s00784-021-03833-8
Krug, R., Reich, S., Connert, T., Kess, S., Soliman, S., Reymus, M., & Krastl, G. (2020). Guided endodontics: A comparative in vitro study on the accuracy and effort of two different planning workflows. International Journal of Computerized Dentistry, 23(2), 119-128. www.blender.org
Li, J., Meneghetti, P. C., Galli, M., Mendonca, G., Chen, Z., & Wang, H. (2022). Open-sleeve templates for computer-assisted implant surgery at healed or extraction sockets: An in vitro comparison to closed-sleeve guided system and free-hand approach. Clinical Oral Implants Research, 33(7), 757-767. https://doi.org/10.1111/clr.13957
Monje, A., Chappuis, V., Monje, F., Muñoz, F., Wang, H.-L., Urban, I., & Buser, D. (2019). The critical peri-implant buccal bone wall thickness revisited: An experimental study in the beagle dog. The International Journal of Oral & Maxillofacial Implants, 34(6), 1328-1336. https://doi.org/10.11607/jomi.7657
Monje, A., Roccuzzo, A., Buser, D., & Wang, H. (2023). Influence of buccal bone wall thickness on the peri-implant hard and soft tissue dimensional changes: A systematic review. Clinical Oral Implants Research, 34(3), 157-176. https://doi.org/10.1111/clr.14029
Norman, G. R., Monteiro, S. D., Sherbino, J., Ilgen, J. S., Schmidt, H. G., & Mamede, S. (2017). The causes of errors in clinical reasoning: Cognitive biases, knowledge deficits, and dual process thinking. Academic Medicine, 92(1), 23-30. https://doi.org/10.1097/ACM.0000000000001421
R Core Team. (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing.
Raabe, C., Dulla, F. A., Yilmaz, B., Chappuis, V., & Abou-Ayash, S. (2023). Influence of drilling sequence and guide-hole design on the accuracy of static computer-assisted implant surgery in extraction sockets and healed sites-An in vitro investigation. Clinical Oral Implants Research, 34, 320-329. https://doi.org/10.1111/clr.14042
Raabe, C., Schuetz, T. S., Chappuis, V., Yilmaz, B., Abou-Ayash, S., & Couso-Queiruga, E. (2023). Accuracy of keyless vs drill-key implant systems for static computer-assisted implant surgery using two guide-hole designs compared to freehand implant placement: An in vitro study. International Journal of Implant Dentistry, 9(1), 4. https://doi.org/10.1186/s40729-023-00470-6
Renouard, F., Amalberti, R., & Renouard, E. (2017). Are “human factors” the primary cause of complications in the field of implant dentistry? The International Journal of Oral & Maxillofacial Implants, 32, 55-61. https://doi.org/10.11607/jomi.2017.2.e
Renouard, F., Renouard, E., Rendón, A., & Pinsky, H. M. (2023). Increasing the margin of patient safety for periodontal and implant treatments: The role of human factors. Periodontology 2000, 92(1), 382-398. https://doi.org/10.1111/prd.12488
Rizzo, G., Prado, M. C., & Rigo, L. (2022). Prevalence of dental implant positioning errors: A cross-sectional study. Imaging Science in Dentistry, 52(4), 343-350. https://doi.org/10.5624/ISD.20220059
Romandini, M., Lima, C., Pedrinaci, I., Araoz, A., Soldini, M. C., & Sanz, M. (2021). Prevalence and risk/protective indicators of peri-implant diseases: A university-representative cross-sectional study. Clinical Oral Implants Research, 32(1), 112-122. https://doi.org/10.1111/CLR.13684
Sailer, I., Karasan, D., Todorovic, A., Ligoutsikou, M., & Pjetursson, B. E. (2022). Prosthetic failures in dental implant therapy. Periodontology 2000, 88(1), 130-144. https://doi.org/10.1111/PRD.12416
Sendyk, D., Chrcanovic, B., Albrektsson, T., Wennerberg, A., & Zindel Deboni, M. (2017). Does surgical experience influence implant survival rate? A systematic review and meta-analysis. The International Journal of Prosthodontics, 30(4), 341-347. https://doi.org/10.11607/ijp.5211
Sittikornpaiboon, P., Arunjaroensuk, S., Kaboosaya, B., Subbalekha, K., Mattheos, N., & Pimkhaokham, A. (2021). Comparison of the accuracy of implant placement using different drilling systems for static computer-assisted implant surgery: A simulation-based experimental study. Clinical Implant Dentistry and Related Research, 23(4), 635-643. https://doi.org/10.1111/cid.13032
Smitkarn, P., Subbalekha, K., Mattheos, N., & Pimkhaokham, A. (2019). The accuracy of single-tooth implants placed using fully digital-guided surgery and freehand implant surgery. Journal of Clinical Periodontology, 46, 949-957. https://doi.org/10.1111/jcpe.13160
Tahmaseb, A., Wu, V., Wismeijer, D., Coucke, W., & Evans, C. (2018). The accuracy of static computer-aided implant surgery: A systematic review and meta-analysis. Clinical Oral Implants Research, 29, 416-435. https://doi.org/10.1111/clr.13346
Tarnow, D. P., Cho, S. C., & Wallace, S. S. (2000). The effect of inter-implant distance on the height of inter-implant bone crest. Journal of Periodontology, 71(4), 546-549. https://doi.org/10.1902/jop.2000.71.4.546
Testori, T., Weinstein, T., Scutellà, F., Wang, H. L., & Zucchelli, G. (2018). Implant placement in the esthetic area: Criteria for positioning single and multiple implants. Periodontology 2000, 77(1), 176-196. https://doi.org/10.1111/prd.12211
von Elm, E., Altman, D. G., Egger, M., Pocock, S. J., Gøtzsche, P. C., & Vandenbroucke, J. P. (2007). The strengthening the reporting of observational studies in epidemiology (STROBE) statement: Guidelines for reporting observational studies. The Lancet, 370(9596), 1453-1457. https://doi.org/10.1016/S0140-6736(07)61602-X

Auteurs

Clemens Raabe (C)

Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Bern, Switzerland.

Philippe Biel (P)

Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Bern, Switzerland.

Fabrice A Dulla (FA)

Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Bern, Switzerland.

Simone F M Janner (SFM)

Clinic of Oral Surgery, University Center for Dental Medicine Basel UZB, University of Basel, Basel, Switzerland.
Surgery Center ZIKO Bern, Bern, Switzerland.

Samir Abou-Ayash (S)

Department of Reconstructive Dentistry and Gerodontology, School of Dental Medicine, University of Bern, Bern, Switzerland.

Emilio Couso-Queiruga (E)

Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Bern, Switzerland.

Classifications MeSH