Sparking potential over 1200 V by a falling water droplet.
Journal
Science advances
ISSN: 2375-2548
Titre abrégé: Sci Adv
Pays: United States
ID NLM: 101653440
Informations de publication
Date de publication:
17 Nov 2023
17 Nov 2023
Historique:
medline:
15
11
2023
pubmed:
15
11
2023
entrez:
15
11
2023
Statut:
ppublish
Résumé
Hydrovoltaic technology has achieved notable breakthroughs in electric output via using the moving boundary of electric double layer, but the output voltage induced by droplets is saturated around 350 volts, and the underlying mechanism remains to be further clarified. Here, we show that falling water droplets can stably spark an unprecedented voltage up to 1200 volts within microseconds that they contact an electrode placed on top of an electret surface, approaching the theoretical upper limit. This sparking potential can be explained and described by a comprehensive model considering the water-electrode contact dynamics from both the macroscale droplet spreading and the microscale electric double layer formation, as well as the presence of a circuit capacitance. It is demonstrated that a droplet-induced electric spark is sufficient to directly ionize gas at atmospheric pressure and split water into hydrogen and oxygen, showing wide application potential in fields of green energy and intelligence.
Identifiants
pubmed: 37967189
doi: 10.1126/sciadv.adi2993
pmc: PMC10651119
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
eadi2993Références
Sci Adv. 2022 Jun 24;8(25):eabo7698
pubmed: 35749507
J Physiol. 1945 Oct 15;104(2):176-95
pubmed: 16991677
Chem Soc Rev. 2022 Jun 20;51(12):4902-4927
pubmed: 35638386
Nat Commun. 2014 May 20;5:3871
pubmed: 24846328
J Phys Condens Matter. 2014 Jul 16;26(28):284102
pubmed: 24920008
Adv Mater. 2020 Jan;32(2):e1905696
pubmed: 31782572
Proc R Soc Lond B Biol Sci. 1952 Oct 16;140(899):177-83
pubmed: 13003922
Nano Lett. 2012 Feb 8;12(2):719-23
pubmed: 22214376
Nat Nanotechnol. 2017 May;12(4):317-321
pubmed: 28135262
Adv Mater. 2020 Jan;32(1):e1905025
pubmed: 31713899
Nature. 2020 Feb;578(7795):392-396
pubmed: 32025037
Phys Rev Lett. 2020 Aug 14;125(7):078301
pubmed: 32857530
Science. 2003 May 23;300(5623):1235-6; author reply 1235-6
pubmed: 12764175
Soft Matter. 2022 Feb 23;18(8):1628-1635
pubmed: 35113106
ACS Nano. 2016 Aug 23;10(8):7297-302
pubmed: 27415838
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Nov;92(5):052313
pubmed: 26651701
Nat Commun. 2014 May 06;5:3582
pubmed: 24800734
Science. 2003 Feb 14;299(5609):1042-4
pubmed: 12532025
Nat Nanotechnol. 2014 May;9(5):378-83
pubmed: 24705513
Adv Mater. 2021 Nov;33(44):e2104290
pubmed: 34510586
J Am Chem Soc. 2018 Oct 24;140(42):13746-13752
pubmed: 30257558
Adv Mater. 2020 Aug;32(33):e2001699
pubmed: 32627893
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Aug;70(2 Pt 1):021506
pubmed: 15447495
Nat Nanotechnol. 2018 Dec;13(12):1109-1119
pubmed: 30523296
Langmuir. 2023 Feb 7;39(5):1826-1837
pubmed: 36696661
Langmuir. 2020 Jul 14;36(27):8002-8008
pubmed: 32559100
Innovation (Camb). 2022 Aug 11;3(5):100301
pubmed: 36051817