Carveol alleviates osteoarthritis progression by acting on synovial macrophage polarization transformation: An in vitro and in vivo study.
Carveol
Chondrocytes
Macrophages
Osteoarthritis
Polarization
Journal
Chemico-biological interactions
ISSN: 1872-7786
Titre abrégé: Chem Biol Interact
Pays: Ireland
ID NLM: 0227276
Informations de publication
Date de publication:
14 Nov 2023
14 Nov 2023
Historique:
received:
15
05
2023
revised:
02
10
2023
accepted:
22
10
2023
pubmed:
16
11
2023
medline:
16
11
2023
entrez:
15
11
2023
Statut:
aheadofprint
Résumé
Osteoarthritis (OA) is a heterogeneous disease that affects the entire joint. Its pathogenesis involves hypertrophy and hyperplasia of synovial cells and polarization infiltration of macrophages, in which macrophages, as a potential target, can delay the progression of the disease by improving the immune microenvironment in OA. To investigate the role and regulatory mechanism of Carveol in cartilage and synovial macrophage reprogramming and crosstalk during the development of OA. RAW264.7 mouse macrophage cell line was mainly used to stimulate macrophages to polarization towards M1 and M2 by LPS, IL4+IL13, respectively. Different concentrations of Carveol were given to intervene, and macrophage culture medium was collected to intervene mouse C57BL6J chondrocytes. ROS assay kit, western blotting, cellular immunofluorescence, scanning microscope and section histology were used to evaluate the effect of Carveol on anti-M1-polarization, M2-polarization promotion and cartilage protection. The mouse destabilization of medial meniscus (DMM) model was observed by micro-CT scan and histology. We found that CA could inhibit the increase of macrophage inflammation level under the intervention of LPS and promote the production of M2 anti-inflammatory substances under the intervention of IL-4+IL13. In addition, Carveol activated NRF2/HO-1/NQO1 pathway and enhanced ROS clearance in chondrocytes under the intervention of macrophage culture medium. The phosphorylation of I-κBα is inhibited, which further reduces the phosphorylation of P65 downstream of nuclear factor-κB (NF-κB) signaling pathway. In addition, Carveol inhibits mitogen activated protein kinase (MAPK) signaling molecules P-JNK, P-ERK and P-P38, and inhibits the production of inflammatory mediators. In vivo, Carveol can reduce osteophytes and bone spurs induced by DMM, reduce hypertrophy of synovial cells, reduce infiltration of macrophages, inhibit subchondral bone destruction, and reduce articular cartilage erosion. Our study suggests that synovial macrophages are potential targets for OA treatment, and Carveol is an effective candidate for OA treatment.
Identifiants
pubmed: 37967808
pii: S0009-2797(23)00448-9
doi: 10.1016/j.cbi.2023.110781
pii:
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
110781Informations de copyright
Copyright © 2023. Published by Elsevier B.V.
Déclaration de conflit d'intérêts
Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.