Quantum gas mixtures and dual-species atom interferometry in space.
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
Nov 2023
Nov 2023
Historique:
received:
05
06
2023
accepted:
14
09
2023
medline:
17
11
2023
pubmed:
16
11
2023
entrez:
16
11
2023
Statut:
ppublish
Résumé
The capability to reach ultracold atomic temperatures in compact instruments has recently been extended into space
Identifiants
pubmed: 37968524
doi: 10.1038/s41586-023-06645-w
pii: 10.1038/s41586-023-06645-w
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
502-508Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Nature Limited.
Références
Becker, D. et al. Space-borne Bose–Einstein condensation for precision interferometry. Nature 562, 391–395 (2018).
pubmed: 30333576
doi: 10.1038/s41586-018-0605-1
Aveline, D. C. et al. Observation of Bose–Einstein condensates in an Earth-orbiting research lab. Nature 582, 193–197 (2020).
pubmed: 32528092
doi: 10.1038/s41586-020-2346-1
Levin, K, Fetter, A. L & Stamper-Kurn, D. M. Ultracold Bosonic and Fermionic Gases (Elsevier, 2012).
Asenbaum, P., Overstreet, C., Kim, M., Curti, J. & Kasevich, M. A. Atom-interferometric test of the equivalence principle at the 10
pubmed: 33216577
doi: 10.1103/PhysRevLett.125.191101
Safronova, M. et al. Search for new physics with atoms and molecules. Rev. Mod. Phys. 90, 025008 (2018).
doi: 10.1103/RevModPhys.90.025008
Bassi, A. et al. A way forward for fundamental physics in space. npj Microgravity 8, 49 (2022).
pubmed: 36336703
pmcid: 9637703
doi: 10.1038/s41526-022-00229-0
Alonso, I. et al. Cold atoms in space: community workshop summary and proposed road-map. EPJ Quantum Technol. 9, 30 (2022).
doi: 10.1140/epjqt/s40507-022-00147-w
Lachmann, M. D. et al. Ultracold atom interferometry in space. Nat. Commun. 12, 1317 (2021).
pubmed: 33637769
pmcid: 7910597
doi: 10.1038/s41467-021-21628-z
Frye, K. et al. The Bose-Einstein condensate and cold atom laboratory. EPJ Quantum Technol. 8, 1 (2021).
doi: 10.1140/epjqt/s40507-020-00090-8
Li, L. et al. The design, realization, and validation of the scheme for quantum degenerate research in microgravity. IEEE Photonics J. 15, 1–8 (2023).
Elsen, M. et al. A dual-species atom interferometer payload for operation on sounding rockets. Microgravity Sci. Technol. 35, 15 (2023).
doi: 10.1007/s12217-023-10068-7
Bloch, I., Dalibard, J. & Nascimbéne, S. Quantum simulations with ultracold quantum gases. Nat. Phys. 8, 267–276 (2012).
doi: 10.1038/nphys2259
Braaten, E. & Hammer, H. W. Universality in few-body systems with large scattering length. Phys. Rep. 428, 259–290 (2006).
doi: 10.1016/j.physrep.2006.03.001
Salomon, C., Shlyapnikov, G. V. & Cugliandolo, L. F. Many-Body Physics with Ultracold Gases: Lecture Notes of the Les Houches Summer School (Oxford Univ. Press, 2012).
Leanhardt, A. E. et al. Cooling Bose-Einstein condensates below 500 picokelvin. Science 301, 1513–1515 (2003).
pubmed: 12970559
doi: 10.1126/science.1088827
Ammann, H. & Christensen, N. Delta kick cooling: a new method for cooling atoms. Phys. Rev. Lett. 78, 2088–2091 (1997).
doi: 10.1103/PhysRevLett.78.2088
Gaaloul, N. et al. A space-based quantum gas laboratory at picokelvin energy scales. Nat. Commun. 13, 7889 (2022).
pubmed: 36550117
pmcid: 9780313
doi: 10.1038/s41467-022-35274-6
Deppner, C. et al. Collective-mode enhanced matter-wave optics. Phys. Rev. Lett. 127, 100401 (2021).
pubmed: 34533345
doi: 10.1103/PhysRevLett.127.100401
Kovachy, T. et al. Matter wave lensing to picokelvin temperatures. Phys. Rev. Lett. 114, 143004 (2015).
pubmed: 25910118
doi: 10.1103/PhysRevLett.114.143004
Wolf, A. et al. Shell-shaped Bose-Einstein condensates based on dual-species mixtures. Phys. Rev. A 106, 013309 (2022).
doi: 10.1103/PhysRevA.106.013309
Chin, C., Grimm, R., Julienne, P. & Tiesinga, E. Feshbach resonances in ultracold gases. Rev. Mod. Phys. 82, 1225–1286 (2010).
doi: 10.1103/RevModPhys.82.1225
Chapurin, R. et al. Precision test of the limits to universality in few-body physics. Phys. Rev. Lett. 123, 233402 (2019).
pubmed: 31868479
doi: 10.1103/PhysRevLett.123.233402
Xie, X. et al. Observation of Efimov universality across a nonuniversal Feshbach resonance in
pubmed: 33412063
doi: 10.1103/PhysRevLett.125.243401
Touboul, P. et al. MICROSCOPE mission: final results of the test of the equivalence principle. Phys. Rev. Lett. 129, 121102 (2022).
pubmed: 36179190
doi: 10.1103/PhysRevLett.129.121102
Amelino-Camelia, G. et al. GAUGE: the GrAnd Unification and Gravity Explorer. Exp. Astron. 23, 549–572 (2009).
doi: 10.1007/s10686-008-9086-9
Schuldt, T. et al. Design of a dual species atom interferometer for space. Exp. Astron. 39, 167–206 (2015).
doi: 10.1007/s10686-014-9433-y
Williams, J. R., Chiow, S.-W., Yu, N. & Müller, H. Quantum test of the equivalence principle and space-time aboard the international space station. New J. Phys. 18, 025018 (2016).
doi: 10.1088/1367-2630/18/2/025018
Ahlers, H. et al. STE-QUEST: Space Time Explorer and QUantum Equivalence principle Space Test. Preprint at https://arxiv.org/abs/2211.15412 (2022).
Barrett, B. et al. Dual matter-wave inertial sensors in weightlessness. Nat. Commun. 7, 13786 (2016).
pubmed: 27941928
pmcid: 5159825
doi: 10.1038/ncomms13786
Bigelow, N. Consortium for Ultracold Atoms in Space. https://taskbook.nasaprs.com/tbp/tbpdf.cfm?id=10085 (2015).
Cornell, E. Zero-G Studies of Few-Body and Many-Body Physics. https://taskbook.nasaprs.com/tbp/tbpdf.cfm?id=11096 (2017).
Williams, J. Fundamental Interactions for Atom Interferometry with Ultracold Quantum Gases in a Microgravity Environment. https://taskbook.nasaprs.com/tbp/tbpdf.cfm?id=11101 (2017).
Lundblad, N. Microgravity Dynamics of Bubble-Geometry Bose-Einstein Condensates. https://taskbook.nasaprs.com/tbp/tbpdf.cfm?id=11095 (2017).
Sackett, C. Development of Atom Interferometry Experiments for the International Space Station’s Cold Atom Laboratory. https://taskbook.nasaprs.com/tbp/tbpdf.cfm?id=11097 (2017).
Pollard, A. R., Moan, C. A., Sackett, C. A., Elliott, E. R. & Thompson, R. J. Quasi-adiabatic external state preparation of ultracold atoms in microgravity. Microgravity Sci. Technol. 32, 1175–1184 (2020).
doi: 10.1007/s12217-020-09840-w
Carollo, R. A. et al. Observation of ultracold atomic bubbles in orbital microgravity. Nature 606, 281–286 (2022).
pubmed: 35585238
doi: 10.1038/s41586-022-04639-8
Williams, J. R. et al. Interferometry of atomic matter-waves in a Cold Atom Lab onboard the International Space Station (in preparation).
Inouye, S. et al. Observation of heteronuclear Feshbach resonances in a mixture of bosons and fermions. Phys. Rev. Lett. 93, 183201 (2004).
pubmed: 15525160
doi: 10.1103/PhysRevLett.93.183201
Klempt, C. et al.
doi: 10.1103/PhysRevA.76.020701
Ferlaino, F. et al. Feshbach spectroscopy of a K–Rb atomic mixture. Phys. Rev. A 73, 040702 (2006).
doi: 10.1103/PhysRevA.73.040702
Timmermans, E. M. E., Tommasini, P., Hussein, M. S. & Kerman, A. K. Feshbach resonances in atomic Bose–Einstein condensates. Phys. Rep. 315, 199–230 (1999).
doi: 10.1016/S0370-1573(99)00025-3
Elliott, E. R., Krutzik, M. C., Williams, J. R., Thompson, R. J. & Aveline, D. C. NASA’s Cold Atom Lab (CAL): system development and ground test status. npj Microgravity 4, 16 (2018).
pubmed: 30155516
pmcid: 6104040
doi: 10.1038/s41526-018-0049-9
Modugno, G. et al. Bose-Einstein condensation of potassium atoms by sympathetic cooling. Science 294, 1320–1322 (2001).
pubmed: 11641466
doi: 10.1126/science.1066687
Modugno, G., Modugno, M., Riboli, F., Roati, G. & Inguscio, M. Two atomic species superfluid. Phys. Rev. Lett. 89, 190404 (2002).
pubmed: 12443105
doi: 10.1103/PhysRevLett.89.190404
Campbell, R. et al. Efficient production of large
doi: 10.1103/PhysRevA.82.063611
Wacker, L. et al. Tunable dual-species Bose-Einstein condensates of
doi: 10.1103/PhysRevA.92.053602
Roati, G. et al.
pubmed: 17678142
doi: 10.1103/PhysRevLett.99.010403
Burchianti, A. et al. Dual-species Bose-Einstein condensate of
doi: 10.1103/PhysRevA.98.063616
Pichery, A. et al. Efficient numerical description of the dynamics of interacting multispecies quantum gases. Preprint at https://doi.org/10.48550/arXiv.2305.13433 (2023).
Kozuma, M. et al. Coherent splitting of Bose-Einstein condensed atoms with optically induced Bragg diffraction. Phys. Rev. Lett. 82, 871–875 (1999).
doi: 10.1103/PhysRevLett.82.871
Chiow, S.-w, Williams, J. & Yu, N. Noise reduction in differential phase extraction of dual atom interferometers using an active servo loop. Phys. Rev. A 93, 013602 (2016).
doi: 10.1103/PhysRevA.93.013602
Cavicchioli, L., Fort, C., Modugno, M., Minardi, F. & Burchianti, A. Dipole dynamics of an interacting bosonic mixture. Phys. Rev. Res. 4, 043068 (2022).
doi: 10.1103/PhysRevResearch.4.043068
D’Incao, J. P., Krutzik, M., Elliott, E. & Williams, J. R. Enhanced association and dissociation of heteronuclear Feshbach molecules in a microgravity environment. Phys. Rev. A 95, 012701 (2017).
doi: 10.1103/PhysRevA.95.012701
Engles, P., Bisset, R. N., D’Incao, J., Forbes, M. M. & Mossman, M. E. Topical: Fundamental Physics and Opportunities with Ultracold Quantum Droplets in Space. https://smd-cms.nasa.gov/wp-content/uploads/2023/05/231_3b2a5a757441d7f3fc94f60661efc284_EngelsPeter.pdf (2021).
D’Incao, J. P. et al. Perspectives and opportunities: a molecular toolkit for fundamental physics and matter-wave interferometry in microgravity. Quantum Sci. Technol. 8, 014004 (2022).
doi: 10.1088/2058-9565/aca04a
Chapman, M. S. et al. Optics and interferometry with Na
pubmed: 10058598
doi: 10.1103/PhysRevLett.74.4783
Penrose, R. On the gravitization of quantum mechanics 1: quantum state reduction. Found. Phys. 44, 557–575 (2014).
doi: 10.1007/s10701-013-9770-0
Ferrari, G. et al. Collisional properties of ultracold K-Rb mixtures. Phys. Rev. Lett. 89, 053202 (2002).
pubmed: 12144441
doi: 10.1103/PhysRevLett.89.053202
Dieckmann, K. Bose-Einstein Condensation with High Atom Number in a Deep Magnetic Trap. PhD thesis, Universiteit van Amsterdam (2001).
Myatt, C. J. Bose-Einstein Condensation Experiments in a Dilute Vapor of Rubidium. PhD thesis, Univ. Colorado (1997).
Garrido Alzar, C. L., Perrin, H., Garraway, B. M. & Lorent, V. Evaporative cooling in a radio-frequency trap. Phys. Rev. A 74, 053413 (2006).
doi: 10.1103/PhysRevA.74.053413
Segal, S. R., Diot, Q., Cornell, E. A., Zozulya, A. A. & Anderson, D. Z. Revealing buried information: Statistical processing techniques for ultracold-gas image analysis. Phys. Rev. A 81, 053601 (2010).
Siemß, J.-N. et al. Analytic theory for Bragg atom interferometry based on the adiabatic theorem. Phys. Rev. A 102, 033709 (2020).
doi: 10.1103/PhysRevA.102.033709
Jenewein, J., Hartmann, S., Roura, A. & Giese, E. Bragg-diffraction-induced imperfections of the signal in retroreflective atom interferometers. Phys. Rev. A 105, 063316 (2022).
doi: 10.1103/PhysRevA.105.063316