Quantum gas mixtures and dual-species atom interferometry in space.


Journal

Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462

Informations de publication

Date de publication:
Nov 2023
Historique:
received: 05 06 2023
accepted: 14 09 2023
medline: 17 11 2023
pubmed: 16 11 2023
entrez: 16 11 2023
Statut: ppublish

Résumé

The capability to reach ultracold atomic temperatures in compact instruments has recently been extended into space

Identifiants

pubmed: 37968524
doi: 10.1038/s41586-023-06645-w
pii: 10.1038/s41586-023-06645-w
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

502-508

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer Nature Limited.

Références

Becker, D. et al. Space-borne Bose–Einstein condensation for precision interferometry. Nature 562, 391–395 (2018).
pubmed: 30333576 doi: 10.1038/s41586-018-0605-1
Aveline, D. C. et al. Observation of Bose–Einstein condensates in an Earth-orbiting research lab. Nature 582, 193–197 (2020).
pubmed: 32528092 doi: 10.1038/s41586-020-2346-1
Levin, K, Fetter, A. L & Stamper-Kurn, D. M. Ultracold Bosonic and Fermionic Gases (Elsevier, 2012).
Asenbaum, P., Overstreet, C., Kim, M., Curti, J. & Kasevich, M. A. Atom-interferometric test of the equivalence principle at the 10
pubmed: 33216577 doi: 10.1103/PhysRevLett.125.191101
Safronova, M. et al. Search for new physics with atoms and molecules. Rev. Mod. Phys. 90, 025008 (2018).
doi: 10.1103/RevModPhys.90.025008
Bassi, A. et al. A way forward for fundamental physics in space. npj Microgravity 8, 49 (2022).
pubmed: 36336703 pmcid: 9637703 doi: 10.1038/s41526-022-00229-0
Alonso, I. et al. Cold atoms in space: community workshop summary and proposed road-map. EPJ Quantum Technol. 9, 30 (2022).
doi: 10.1140/epjqt/s40507-022-00147-w
Lachmann, M. D. et al. Ultracold atom interferometry in space. Nat. Commun. 12, 1317 (2021).
pubmed: 33637769 pmcid: 7910597 doi: 10.1038/s41467-021-21628-z
Frye, K. et al. The Bose-Einstein condensate and cold atom laboratory. EPJ Quantum Technol. 8, 1 (2021).
doi: 10.1140/epjqt/s40507-020-00090-8
Li, L. et al. The design, realization, and validation of the scheme for quantum degenerate research in microgravity. IEEE Photonics J. 15, 1–8 (2023).
Elsen, M. et al. A dual-species atom interferometer payload for operation on sounding rockets. Microgravity Sci. Technol. 35, 15 (2023).
doi: 10.1007/s12217-023-10068-7
Bloch, I., Dalibard, J. & Nascimbéne, S. Quantum simulations with ultracold quantum gases. Nat. Phys. 8, 267–276 (2012).
doi: 10.1038/nphys2259
Braaten, E. & Hammer, H. W. Universality in few-body systems with large scattering length. Phys. Rep. 428, 259–290 (2006).
doi: 10.1016/j.physrep.2006.03.001
Salomon, C., Shlyapnikov, G. V. & Cugliandolo, L. F. Many-Body Physics with Ultracold Gases: Lecture Notes of the Les Houches Summer School (Oxford Univ. Press, 2012).
Leanhardt, A. E. et al. Cooling Bose-Einstein condensates below 500 picokelvin. Science 301, 1513–1515 (2003).
pubmed: 12970559 doi: 10.1126/science.1088827
Ammann, H. & Christensen, N. Delta kick cooling: a new method for cooling atoms. Phys. Rev. Lett. 78, 2088–2091 (1997).
doi: 10.1103/PhysRevLett.78.2088
Gaaloul, N. et al. A space-based quantum gas laboratory at picokelvin energy scales. Nat. Commun. 13, 7889 (2022).
pubmed: 36550117 pmcid: 9780313 doi: 10.1038/s41467-022-35274-6
Deppner, C. et al. Collective-mode enhanced matter-wave optics. Phys. Rev. Lett. 127, 100401 (2021).
pubmed: 34533345 doi: 10.1103/PhysRevLett.127.100401
Kovachy, T. et al. Matter wave lensing to picokelvin temperatures. Phys. Rev. Lett. 114, 143004 (2015).
pubmed: 25910118 doi: 10.1103/PhysRevLett.114.143004
Wolf, A. et al. Shell-shaped Bose-Einstein condensates based on dual-species mixtures. Phys. Rev. A 106, 013309 (2022).
doi: 10.1103/PhysRevA.106.013309
Chin, C., Grimm, R., Julienne, P. & Tiesinga, E. Feshbach resonances in ultracold gases. Rev. Mod. Phys. 82, 1225–1286 (2010).
doi: 10.1103/RevModPhys.82.1225
Chapurin, R. et al. Precision test of the limits to universality in few-body physics. Phys. Rev. Lett. 123, 233402 (2019).
pubmed: 31868479 doi: 10.1103/PhysRevLett.123.233402
Xie, X. et al. Observation of Efimov universality across a nonuniversal Feshbach resonance in
pubmed: 33412063 doi: 10.1103/PhysRevLett.125.243401
Touboul, P. et al. MICROSCOPE mission: final results of the test of the equivalence principle. Phys. Rev. Lett. 129, 121102 (2022).
pubmed: 36179190 doi: 10.1103/PhysRevLett.129.121102
Amelino-Camelia, G. et al. GAUGE: the GrAnd Unification and Gravity Explorer. Exp. Astron. 23, 549–572 (2009).
doi: 10.1007/s10686-008-9086-9
Schuldt, T. et al. Design of a dual species atom interferometer for space. Exp. Astron. 39, 167–206 (2015).
doi: 10.1007/s10686-014-9433-y
Williams, J. R., Chiow, S.-W., Yu, N. & Müller, H. Quantum test of the equivalence principle and space-time aboard the international space station. New J. Phys. 18, 025018 (2016).
doi: 10.1088/1367-2630/18/2/025018
Ahlers, H. et al. STE-QUEST: Space Time Explorer and QUantum Equivalence principle Space Test. Preprint at https://arxiv.org/abs/2211.15412 (2022).
Barrett, B. et al. Dual matter-wave inertial sensors in weightlessness. Nat. Commun. 7, 13786 (2016).
pubmed: 27941928 pmcid: 5159825 doi: 10.1038/ncomms13786
Bigelow, N. Consortium for Ultracold Atoms in Space. https://taskbook.nasaprs.com/tbp/tbpdf.cfm?id=10085 (2015).
Cornell, E. Zero-G Studies of Few-Body and Many-Body Physics. https://taskbook.nasaprs.com/tbp/tbpdf.cfm?id=11096 (2017).
Williams, J. Fundamental Interactions for Atom Interferometry with Ultracold Quantum Gases in a Microgravity Environment. https://taskbook.nasaprs.com/tbp/tbpdf.cfm?id=11101 (2017).
Lundblad, N. Microgravity Dynamics of Bubble-Geometry Bose-Einstein Condensates. https://taskbook.nasaprs.com/tbp/tbpdf.cfm?id=11095 (2017).
Sackett, C. Development of Atom Interferometry Experiments for the International Space Station’s Cold Atom Laboratory. https://taskbook.nasaprs.com/tbp/tbpdf.cfm?id=11097 (2017).
Pollard, A. R., Moan, C. A., Sackett, C. A., Elliott, E. R. & Thompson, R. J. Quasi-adiabatic external state preparation of ultracold atoms in microgravity. Microgravity Sci. Technol. 32, 1175–1184 (2020).
doi: 10.1007/s12217-020-09840-w
Carollo, R. A. et al. Observation of ultracold atomic bubbles in orbital microgravity. Nature 606, 281–286 (2022).
pubmed: 35585238 doi: 10.1038/s41586-022-04639-8
Williams, J. R. et al. Interferometry of atomic matter-waves in a Cold Atom Lab onboard the International Space Station (in preparation).
Inouye, S. et al. Observation of heteronuclear Feshbach resonances in a mixture of bosons and fermions. Phys. Rev. Lett. 93, 183201 (2004).
pubmed: 15525160 doi: 10.1103/PhysRevLett.93.183201
Klempt, C. et al.
doi: 10.1103/PhysRevA.76.020701
Ferlaino, F. et al. Feshbach spectroscopy of a K–Rb atomic mixture. Phys. Rev. A 73, 040702 (2006).
doi: 10.1103/PhysRevA.73.040702
Timmermans, E. M. E., Tommasini, P., Hussein, M. S. & Kerman, A. K. Feshbach resonances in atomic Bose–Einstein condensates. Phys. Rep. 315, 199–230 (1999).
doi: 10.1016/S0370-1573(99)00025-3
Elliott, E. R., Krutzik, M. C., Williams, J. R., Thompson, R. J. & Aveline, D. C. NASA’s Cold Atom Lab (CAL): system development and ground test status. npj Microgravity 4, 16 (2018).
pubmed: 30155516 pmcid: 6104040 doi: 10.1038/s41526-018-0049-9
Modugno, G. et al. Bose-Einstein condensation of potassium atoms by sympathetic cooling. Science 294, 1320–1322 (2001).
pubmed: 11641466 doi: 10.1126/science.1066687
Modugno, G., Modugno, M., Riboli, F., Roati, G. & Inguscio, M. Two atomic species superfluid. Phys. Rev. Lett. 89, 190404 (2002).
pubmed: 12443105 doi: 10.1103/PhysRevLett.89.190404
Campbell, R. et al. Efficient production of large
doi: 10.1103/PhysRevA.82.063611
Wacker, L. et al. Tunable dual-species Bose-Einstein condensates of
doi: 10.1103/PhysRevA.92.053602
Roati, G. et al.
pubmed: 17678142 doi: 10.1103/PhysRevLett.99.010403
Burchianti, A. et al. Dual-species Bose-Einstein condensate of
doi: 10.1103/PhysRevA.98.063616
Pichery, A. et al. Efficient numerical description of the dynamics of interacting multispecies quantum gases. Preprint at https://doi.org/10.48550/arXiv.2305.13433 (2023).
Kozuma, M. et al. Coherent splitting of Bose-Einstein condensed atoms with optically induced Bragg diffraction. Phys. Rev. Lett. 82, 871–875 (1999).
doi: 10.1103/PhysRevLett.82.871
Chiow, S.-w, Williams, J. & Yu, N. Noise reduction in differential phase extraction of dual atom interferometers using an active servo loop. Phys. Rev. A 93, 013602 (2016).
doi: 10.1103/PhysRevA.93.013602
Cavicchioli, L., Fort, C., Modugno, M., Minardi, F. & Burchianti, A. Dipole dynamics of an interacting bosonic mixture. Phys. Rev. Res. 4, 043068 (2022).
doi: 10.1103/PhysRevResearch.4.043068
D’Incao, J. P., Krutzik, M., Elliott, E. & Williams, J. R. Enhanced association and dissociation of heteronuclear Feshbach molecules in a microgravity environment. Phys. Rev. A 95, 012701 (2017).
doi: 10.1103/PhysRevA.95.012701
Engles, P., Bisset, R. N., D’Incao, J., Forbes, M. M. & Mossman, M. E. Topical: Fundamental Physics and Opportunities with Ultracold Quantum Droplets in Space. https://smd-cms.nasa.gov/wp-content/uploads/2023/05/231_3b2a5a757441d7f3fc94f60661efc284_EngelsPeter.pdf (2021).
D’Incao, J. P. et al. Perspectives and opportunities: a molecular toolkit for fundamental physics and matter-wave interferometry in microgravity. Quantum Sci. Technol. 8, 014004 (2022).
doi: 10.1088/2058-9565/aca04a
Chapman, M. S. et al. Optics and interferometry with Na
pubmed: 10058598 doi: 10.1103/PhysRevLett.74.4783
Penrose, R. On the gravitization of quantum mechanics 1: quantum state reduction. Found. Phys. 44, 557–575 (2014).
doi: 10.1007/s10701-013-9770-0
Ferrari, G. et al. Collisional properties of ultracold K-Rb mixtures. Phys. Rev. Lett. 89, 053202 (2002).
pubmed: 12144441 doi: 10.1103/PhysRevLett.89.053202
Dieckmann, K. Bose-Einstein Condensation with High Atom Number in a Deep Magnetic Trap. PhD thesis, Universiteit van Amsterdam (2001).
Myatt, C. J. Bose-Einstein Condensation Experiments in a Dilute Vapor of Rubidium. PhD thesis, Univ. Colorado (1997).
Garrido Alzar, C. L., Perrin, H., Garraway, B. M. & Lorent, V. Evaporative cooling in a radio-frequency trap. Phys. Rev. A 74, 053413 (2006).
doi: 10.1103/PhysRevA.74.053413
Segal, S. R., Diot, Q., Cornell, E. A., Zozulya, A. A. & Anderson, D. Z. Revealing buried information: Statistical processing techniques for ultracold-gas image analysis. Phys. Rev. A 81, 053601 (2010).
Siemß, J.-N. et al. Analytic theory for Bragg atom interferometry based on the adiabatic theorem. Phys. Rev. A 102, 033709 (2020).
doi: 10.1103/PhysRevA.102.033709
Jenewein, J., Hartmann, S., Roura, A. & Giese, E. Bragg-diffraction-induced imperfections of the signal in retroreflective atom interferometers. Phys. Rev. A 105, 063316 (2022).
doi: 10.1103/PhysRevA.105.063316

Auteurs

Ethan R Elliott (ER)

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA. Ethan.R.Elliott@jpl.nasa.gov.

David C Aveline (DC)

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.

Nicholas P Bigelow (NP)

Department of Physics and Astronomy, University of Rochester, Rochester, NY, USA.

Patrick Boegel (P)

Institut für Quantenphysik and Center for Integrated Quantum Science and Technology (IQST), Ulm University, Ulm, Germany.

Sofia Botsi (S)

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.

Eric Charron (E)

Institut des Sciences Moléculaires d'Orsay, Université Paris-Saclay, CNRS, Orsay, France.

José P D'Incao (JP)

JILA, NIST, and the Department of Physics, University of Colorado, Boulder, CO, USA.

Peter Engels (P)

Department of Physics and Astronomy, Washington State University, Pullman, WA, USA.

Timothé Estrampes (T)

Institut des Sciences Moléculaires d'Orsay, Université Paris-Saclay, CNRS, Orsay, France.
Institute of Quantum Optics, QUEST-Leibniz Research School, Leibniz University Hannover, Hanover, Germany.

Naceur Gaaloul (N)

Institute of Quantum Optics, QUEST-Leibniz Research School, Leibniz University Hannover, Hanover, Germany.

James R Kellogg (JR)

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.

James M Kohel (JM)

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.

Norman E Lay (NE)

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.

Nathan Lundblad (N)

Department of Physics and Astronomy, Bates College, Lewiston, ME, USA.

Matthias Meister (M)

German Aerospace Center (DLR), Institute of Quantum Technologies, Ulm, Germany.

Maren E Mossman (ME)

Department of Physics and Astronomy, Washington State University, Pullman, WA, USA.
Department of Physics and Biophysics, University of San Diego, San Diego, CA, USA.

Gabriel Müller (G)

Institute of Quantum Optics, QUEST-Leibniz Research School, Leibniz University Hannover, Hanover, Germany.

Holger Müller (H)

Department of Physics, University of California, Berkeley, CA, USA.

Kamal Oudrhiri (K)

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.

Leah E Phillips (LE)

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.

Annie Pichery (A)

Institut des Sciences Moléculaires d'Orsay, Université Paris-Saclay, CNRS, Orsay, France.
Institute of Quantum Optics, QUEST-Leibniz Research School, Leibniz University Hannover, Hanover, Germany.

Ernst M Rasel (EM)

Institute of Quantum Optics, QUEST-Leibniz Research School, Leibniz University Hannover, Hanover, Germany.

Charles A Sackett (CA)

Physics Department, University of Virginia, Charlottesville, VA, USA.

Matteo Sbroscia (M)

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.

Wolfgang P Schleich (WP)

Institut für Quantenphysik and Center for Integrated Quantum Science and Technology (IQST), Ulm University, Ulm, Germany.
Hagler Institute for Advanced Study, Texas A&M University, College Station, TX, USA.
Texas A&M AgriLife Research, Texas A&M University, College Station, TX, USA.
Institute for Quantum Science and Engineering (IQSE), Department of Physics and Astronomy, Texas A&M University, College Station, TX, USA.

Robert J Thompson (RJ)

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.

Jason R Williams (JR)

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA. Jason.R.Williams.Dr@jpl.nasa.gov.

Classifications MeSH