Post-translational modification by the Pgf glycosylation machinery modulates Streptococcus mutans OMZ175 physiology and virulence.
Streptococcus mutans
Cnm
Pgf machinery
oral colonization
protein glycosylation
protein phosphorylation
Journal
Molecular microbiology
ISSN: 1365-2958
Titre abrégé: Mol Microbiol
Pays: England
ID NLM: 8712028
Informations de publication
Date de publication:
16 Nov 2023
16 Nov 2023
Historique:
revised:
23
10
2023
received:
08
10
2022
accepted:
24
10
2023
medline:
17
11
2023
pubmed:
17
11
2023
entrez:
16
11
2023
Statut:
aheadofprint
Résumé
Streptococcus mutans is commonly associated with dental caries and the ability to form biofilms is essential for its pathogenicity. We recently identified the Pgf glycosylation machinery of S. mutans, responsible for the post-translational modification of the surface-associated adhesins Cnm and WapA. Since the four-gene pgf operon (pgfS-pgfM1-pgfE-pgfM2) is part of the S. mutans core genome, we hypothesized that the scope of the Pgf system goes beyond Cnm and WapA glycosylation. In silico analyses and tunicamycin sensitivity assays suggested a functional overlap between the Pgf machinery and the rhamnose-glucose polysaccharide synthesis pathway. Phenotypic characterization of pgf mutants (ΔpgfS, ΔpgfE, ΔpgfM1, ΔpgfM2, and Δpgf) revealed that the Pgf system is important for biofilm formation, surface charge, membrane stability, and survival in human saliva. Moreover, deletion of the entire pgf operon (Δpgf strain) resulted in significantly impaired colonization in a rat oral colonization model. Using Cnm as a model, we showed that Cnm is heavily modified with N-acetyl hexosamines but it becomes heavily phosphorylated with the inactivation of the PgfS glycosyltransferase, suggesting a crosstalk between these two post-translational modification mechanisms. Our results revealed that the Pgf machinery contributes to multiple aspects of S. mutans pathobiology that may go beyond Cnm and WapA glycosylation.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : NIDCR NIH HHS
ID : R01 DE022559
Pays : United States
Organisme : NIDCR NIH HHS
ID : DE022559
Pays : United States
Organisme : NIDCR NIH HHS
ID : DE021990-11
Pays : United States
Informations de copyright
© 2023 John Wiley & Sons Ltd.
Références
Abranches, J., Miller, J.H., Martinez, A.R., Simpson-Haidaris, P.J., Burne, R.A. & Lemos, J.A. (2011) The collagen-binding protein Cnm is required for Streptococcus mutans adherence to and intracellular invasion of human coronary artery endothelial cells. Infection and Immunity, 79, 2277-2284.
Allen, K.N. & Imperiali, B. (2019) Structural and mechanistic themes in glycoconjugate biosynthesis at membrane interfaces. Current Opinion in Structural Biology, 59, 81-90.
Alves, L.A., Ganguly, T., Mattos-Graner, R.O., Kajfasz, J., Harth-Chu, E.N., Lemos, J.A. et al. (2018) CovR and VicRKX regulate transcription of the collagen binding protein Cnm of Streptococcus mutans. Journal of Bacteriology, 200, 1-14.
Andresen, S., Cologna, N.d.M.d., Archer-Hartman, S., Rogers, A.M., Samaddar, S., Black, I.M. et al. (2023) Involvement of the Streptococcus mutans UDP-4-epimerases PgfE and GalE in protein glycosylation, carbon metabolism and cell surface glycosylation. Glycobiology, 33, 245-259.
Andresen, S., Fantone, K., Chapla, D., Rada, B., Moremen, K.W., Pierce, M. et al. (2022) Human Intelectin-1 promotes cellular attachment and neutrophil killing of Streptococcus pneumoniae in a serotype-dependent manner. Infection and Immunity, 90, e0068221. Available from: https://doi.org/10.1128/iai.00682-21
Ardiccioni, C., Clarke, O.B., Tomasek, D., Issa, H.A., Alpen, D.C.v., Pond, H.L. et al. (2016) Structure of the polyisoprenyl-phosphate glycosyltransferase GtrB and insights into the mechanism of catalysis. Nature Communications, 7, 10175.
Arora, S., Gordon, J. & Hook, M. (2021) Collagen binding proteins of gram-positive pathogens. Frontiers in Microbiology, 12, 1-16.
Avilés-Reyes, A., Freires, I.A., Besingi, R., Purushotham, S., Deivanayagam, C., Brady, L.J. et al. (2018) Characterization of the pgf operon involved in the posttranslational modification of Streptococcus mutans surface proteins. Scientific Reports, 8, 1-12.
Avilés-Reyes, A., Miller, J.H., Simpson-Haidaris, P.J., Hagen, F.K., Abranches, J. & Lemos, J.A. (2014) Modification of Streptococcus mutans Cnm by PgfS contributes to adhesion, endothelial cell invasion, and virulence. Journal of Bacteriology, 196, 2789-2797.
Avilés-Reyes, A., Miller, J.H., Simpson-Haidaris, P.J., Lemos, J.A. & Abranches, J. (2014) Cnm is a major virulence factor of invasive Streptococcus mutans and part of a conserved three-gene locus. Molecular Oral Microbiology, 29, 11-23.
Avilés-Reyes, A., Miller, J.H.H., Lemos, J.A.A. & Abranches, J. (2017) The collagen-binding proteins of Streptococcus mutans and related streptococci. Molecular Oral Microbiology, 32, 89-106.
Baek, M., Park, T., Heo, L., Park, C. & Seok, C. (2017) GalaxyHomomer: a web server for protein homo-oligomer structure prediction from a monomer sequence or structure. Nucleic Acids Research, 45, W320-W324.
Banu, L.D., Conrads, G., Rehrauer, H., Hussain, H., Allan, E. & Ploeg, J.R.v.d. (2010) The Streptococcus mutans serine/threonine kinase, PknB, regulates competence development, bacteriocin production, and Cell Wall metabolism. Infection and Immunity, 78, 2209-2220.
Bischer, A.P., Kovacs, C.J., Faustoferri, R.C. & Quivey, R.G. (2020) Disruption of L-rhamnose biosynthesis results in severe growth defects in Streptococcus mutans. Journal of Bacteriology, 202, 1-14.
Blum, M., Chang, H.-Y., Chuguransky, S., Grego, T., Kandasaamy, S., Mitchell, A. et al. (2021) The InterPro protein families and domains database: 20 years on. Nucleic Acids Research, 49, D344-D354.
Bowen, W.H.H. & Koo, H. (2011) Biology of Streptococcus mutans-derived glucosyltransferases: role in extracellular matrix formation of cariogenic biofilms. Caries Research, 45, 69-86.
Brandtzaeg, P. (2013) Secretory immunity with special reference to the oral cavity. Journal of Oral Microbiology, 5, 1-24. http://www.ncbi.nlm.nih.gov/pubmed/23487566 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3595421
Brockhausen, I. (2014) Crossroads between bacterial and mammalian glycosyltransferases. Frontiers in Immunology, 5, 21. Available from: https://doi.org/10.3389/fimmu.2014.00492/abstract
Bucher, T., Oppenheimer-Shaanan, Y., Savidor, A., Bloom-Ackermann, Z. & Kolodkin-Gal, I. (2015) Disturbance of the bacterial cell wall specifically interferes with biofilm formation: hampering matrix-cell wall interactions. Environmental Microbiology Reports, 7, 990-1004.
Chapot-Chartier, M.P. & Kulakauskas, S. (2014) Cell wall structure and function in lactic acid bacteria. Microbial Cell Factories, 13, 1-23.
Cologna, N.M.d., Samaddar, S., Valle, C.A., Vargas, J., Aviles-Reyes, A., Morales, J. et al. (2021) Amyloid aggregation of Streptococcus mutans Cnm influences its collagen-binding activity. Applied and Environmental Microbiology, 87, e0114921.
Crippen, C.S., Glushka, J., Vinogradov, E. & Szymanski, C.M. (2021) Trehalose-deficient Acinetobacter baumannii exhibits reduced virulence by losing capsular polysaccharide and altering membrane integrity. Glycobiology, 31, 1520-1530.
Eichler, J. (2019) Protein glycosylation. Current Biology, 29, R229-R231.
Esberg, A., Sheng, N., Mårell, L., Claesson, R., Persson, K., Borén, T. et al. (2017) Streptococcus mutans adhesin biotypes that match and predict individual caries development. eBioMedicine, 24, 205-215.
Fábián, T.K., Hermann, P., Beck, A., Fejérdy, P. & Fábián, G. (2012) Salivary defense proteins: their network and role in innate and acquired oral immunity. International Journal of Molecular Sciences, 13, 4295-4320.
Garcia, B.A., Acosta, N.C., Tomar, S.L., Roesch, L.F.W., Lemos, J.A., Mugayar, L.R.F. et al. (2021) Association of Candida albicans and Cbp+ Streptococcus mutans with early childhood caries recurrence. Scientific Reports, 11, 10802.
Green, M.R. & Sambrook, J. (2016) Precipitation of DNA with ethanol. Cold Spring Harb Protoc, 2016, 1116-1120.
Habimana, O., Semião, A.J.C. & Casey, E. (2014) The role of cell-surface interactions in bacterial initial adhesion and consequent biofilm formation on nanofiltration/reverse osmosis membranes. Journal of Membrane Science, 454, 82-96.
Hallgren, J., Tsirigos, K.D., Pedersen, M.D., Armenteros, J.J.A., Marcatili, P., Nielsen, H. et al. (2022) DeepTMHMM predicts alpha and beta transmembrane proteins using deep neural networks. 2022.04.08.487609. Available from: https://doi.org/10.1101/2022.04.08.487609v1 [Accessed 10th November 2022].
Hart, G.W., Slawson, C., Ramirez-Correa, G. & Lagerlof, O. (2011) Cross talk between O-GlcNAcylation and phosphorylation: roles in signaling, transcription, and chronic disease. Annual Review of Biochemistry, 80, 825-858.
Hosoki, S., Saito, S., Tonomura, S., Ishiyama, H., Yoshimoto, T., Ikeda, S. et al. (2020) Oral carriage of Streptococcus mutans harboring the cnm gene relates to an increased incidence of cerebral microbleeds. Stroke, 51, 3632-3639.
Inenaga, C., Hokamura, K., Nakano, K., Nomura, R., Naka, S., Ohashi, T. et al. (2018) A potential new risk factor for stroke: Streptococcus mutans with collagen-binding protein. World Neurosurgery, 113, e77-e81.
Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O. et al. (2021) Highly accurate protein structure prediction with AlphaFold. Nature, 596, 583-589.
Klein, M.I., Hwang, G., Santos, P.H.S., Campanella, O.H. & Koo, H. (2015) Streptococcus mutans-derived extracellular matrix in cariogenic oral biofilms. Frontiers in Cellular and Infection Microbiology, 5, 1-8. Available from: https://doi.org/10.3389/fcimb.2015.00010/abstract
Kovacs, C.J., Faustoferri, R.C., Bischer, A.P. & Quivey, R.G. (2019) Streptococcus mutans requires mature rhamnose-glucose polysaccharides for proper pathophysiology, morphogenesis and cellular division. Molecular Microbiology, 112, 944-959.
Krzyściak, W., Jurczak, A., Kościelniak, D., Bystrowska, B. & Skalniak, A. (2014) The virulence of Streptococcus mutans and the ability to form biofilms. European Journal of Clinical Microbiology & Infectious Diseases, 33, 499-515.
Lees-Miller, R.G., Iwashkiw, J.A., Scott, N.E., Seper, A., Vinogradov, E., Schild, S. et al. (2013) A common pathway for O-linked protein-glycosylation and synthesis of capsule in Acinetobacter baumannii. Molecular Microbiology, 89, 816-830.
Lemos, J.A., Abranches, J., Koo, H., Marquis, R.E. & Burne, R.A. (2010) Protocols to study the physiology of oral biofilms. Methods in Molecular Biology (Clifton, NJ), 666, 87-102.
Li, J., Dong, X., Cui, Y., Li, S., Chen, C., Zhang, X. et al. (2022) Simultaneous enrichment and sequential separation of O-linked glycopeptides and phosphopeptides with immobilized titanium (IV) ion affinity chromatography materials. Journal of Chromatography A, 1681, 463462.
Macek, B., Forchhammer, K., Hardouin, J., Weber-Ban, E., Grangeasse, C. & Mijakovic, I. (2019) Protein post-translational modifications in bacteria. Nature Reviews Microbiology, 17, 651-664.
McCorvie, T.J. & Timson, D.J. (2014) UDP-Galactose-4-Epimerase (GALE). In: Taniguchi, N., Honke, K., Fukuda, M., Narimatsu, H., Yamaguchi, Y. & Angata, T. (Eds.) Handbook of glycosyltransferases and related genes. Tokyo: Springer Japan, pp. 1449-1464. Available from: https://doi.org/10.1007/978-4-431-54240-7_21 [Accessed 11th November 2022].
Miller, J.H., Avilés-Reyes, A., Scott-Anne, K., Gregoire, S., Watson, G.E., Sampson, E. et al. (2015) The collagen binding protein Cnm contributes to oral colonization and cariogenicity of Streptococcus mutans OMZ175. Infection and Immunity, 83, 2001-2010.
Nagasawa, R., Sato, T., Nomura, N., Nakamura, T. & Senpuku, H. (2020) Potential risk of spreading resistance genes within extracellular-DNA-dependent biofilms of Streptococcus mutans in response to cell envelope stress induced by sub-MICs of bacitracin. Applied and Environmental Microbiology, 86, e00770-20.
Nakano, K., Nomura, R., Taniguchi, N., Lapirattanakul, J., Kojima, A., Naka, S. et al. (2010) Molecular characterization of Streptococcus mutans strains containing the cnm gene encoding a collagen-binding adhesin. Archives of Oral Biology, 55, 34-39.
Ng, W. & Ting, Y.-P. (2016) Zeta potential of bacterial cells: effect of wash buffers. PeerJ Preprints Open Access, 1-2.
Nomura, R., Naka, S., Nemoto, H., Otsugu, M., Nakamura, S., Ooshima, T. et al. (2013) Potential high virulence for infective endocarditis in Streptococcus mutans strains with collagen-binding proteins but lacking PA expression. Archives of Oral Biology, 58, 1627-1634.
Nomura, R., Nakano, K., Taniguchi, N., Lapirattanakul, J., Nemoto, H., Grönroos, L. et al. (2009) Molecular and clinical analyses of the gene encoding the collagen-binding adhesin of Streptococcus mutans. Journal of Medical Microbiology, 58, 469-475.
Nomura, R., Otsugu, M., Hamada, M., Matayoshi, S., Teramoto, N., Iwashita, N. et al. (2020) Potential involvement of Streptococcus mutans possessing collagen binding protein Cnm in infective endocarditis. Scientific Reports, 10, 1-14.
Nothaft, H. & Szymanski, C.M. (2010) Protein glycosylation in bacteria: sweeter than ever. Nature Reviews Microbiology, 8, 765-778.
Nothaft, H. & Szymanski, C.M. (2013) Bacterial protein n-glycosylation: new perspectives and applications. Journal of Biological Chemistry, 288, 6912-6920.
Patry, R.T., Stahl, M., Perez-Munoz, M.E., Nothaft, H., Wenzel, C.Q., Sacher, J.C. et al. (2019) Bacterial AB 5 toxins inhibit the growth of gut bacteria by targeting ganglioside-like glycoconjugates. Nature Communications, 10, 1-13. Available from: https://doi.org/10.1038/s41467-019-09362-z
Paula, A.J., Hwang, G. & Koo, H. (2020) Dynamics of bacterial population growth in biofilms resemble spatial and structural aspects of urbanization. Nature Communications, 11, 1-14.
Pedersen, A.M.L. & Belstrøm, D. (2019) The role of natural salivary defences in maintaining a healthy oral microbiota. Journal of Dentistry, 80, S3-S12.
Pitts, N.B., Zero, D.T., Marsh, P.D., Ekstrand, K., Weintraub, J.A., Ramos-Gomez, F. et al. (2017) Dental caries. Nature Reviews Disease Primers, 3, 1-16.
Rainey, K., Michalek, S.M., Wen, Z.T. & Wu, H. (2018) Glycosyltransferase-mediated biofilm matrix dynamics and virulence of Streptococcus mutans. Applied and Environmental Microbiology, 85, 1-15.
Reddick, L.E. & Alto, N.M. (2014) Bacteria fighting back: how pathogens target and subvert the host innate immune system. Molecular Cell, 54, 321-328.
Renner, L.D. & Weibel, D.B. (2011) Physicochemical regulation of biofilm formation. MRS Bulletin, 36, 347-355.
Rijn, I.v.d. & Kessler, R.E. (1980) Growth characteristics of group a streptococci in a new chemically defined medium. Infection and Immunity, 27, 444-448.
Rismondo, J., Gillis, A. & Gründling, A. (2021) Modifications of cell wall polymers in gram-positive bacteria by multi-component transmembrane glycosylation systems. Current Opinion in Microbiology, 60, 24-33.
Rismondo, J., Haddad, T.F.M., Shen, Y., Loessner, M.J. & Gründling, A. (2020) GtcA is required for LTA glycosylation in Listeria monocytogenes serovar 1/2a and Bacillus subtilis. Cell Surface, 6, 100038.
Rismondo, J., Percy, M.G. & Gründling, A. (2018) Discovery of genes required for lipoteichoic acid glycosylation predicts two distinct mechanisms for wall teichoic acid glycosylation. Journal of Biological Chemistry, 293, 3293-3306.
Sato, Y., Okamoto, K., Kagami, A., Yamamoto, Y., Igarashi, T. & Kizaki, H. (2004) Streptococcus mutans strains harboring collagen-binding adhesin. Journal of Dental Research, 83, 534-539.
Schäffer, C. & Messner, P. (2017) Emerging facets of prokaryotic glycosylation. FEMS Microbiology Reviews, 41, 49-91.
Schmid, J., Heider, D., Wendel, N.J., Sperl, N. & Sieber, V. (2016) Bacterial glycosyltransferases: challenges and opportunities of a highly diverse enzyme class toward tailoring natural products. Frontiers in Microbiology, 7, 1-7.
Shajahan, A., Heiss, C., Ishihara, M. & Azadi, P. (2017) Glycomic and glycoproteomic analysis of glycoproteins-a tutorial. Analytical and Bioanalytical Chemistry, 409, 4483-4505.
Simón-Soro, A. & Mira, A. (2015) Solving the etiology of dental caries. Trends in Microbiology, 23, 76-82.
Soni, K.A., Balasubramanian, A.K., Beskok, A. & Pillai, S.D. (2008) Zeta potential of selected bacteria in drinking water when dead, starved, or exposed to minimal and rich culture media. Current Microbiology, 56, 93-97.
Spiro, R.G. (2002) Protein glycosylation: nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds. Glycobiology, 12, 43R-56R.
Takahashi, M., Hasegawa, Y., Maeda, K., Kitano, M. & Taniguchi, N. (2022) Role of glycosyltransferases in carcinogenesis; growth factor signaling and EMT/MET programs. Glycoconjugate Journal, 39, 167-176.
Vila, T., Rizk, A.M., Sultan, A.S. & Jabra-Rizk, M.A. (2019) The power of saliva: antimicrobial and beyond. PLoS Pathogens, 15, e1008058.
Wang, S., Huang, X., Sun, D., Xin, X., Pan, Q., Peng, S. et al. (2012) Extensive crosstalk between O-GlcNAcylation and phosphorylation regulates Akt signaling. PLoS ONE, 7, e37427.
Wilson, W.W., Wade, M.M., Holman, S.C. & Champlin, F.R. (2001) Status of methods for assessing bacterial cell surface charge properties based on zeta potential measurements. Journal of Microbiological Methods, 43, 153-164.
Yi, L., Fu, M., Shao, Y., Tang, K., Yan, Y. & Ding, C.-F. (2022) Bifunctional super-hydrophilic mesoporous nanocomposite: a novel nanoprobe for investigation of glycosylation and phosphorylation in Alzheimer's disease. Journal of Chromatography A, 1676, 463236.
Zhu, X., Liu, D., Singh, A.K., Drolia, R., Bai, X., Tenguria, S. et al. (2018) Tunicamycin mediated inhibition of wall teichoic acid affects Staphylococcus aureus and Listeria monocytogenes cell morphology, biofilm formation and virulence. Frontiers in Microbiology, 9, 1-18.