Above- and belowground fungal biodiversity of Populus trees on a continental scale.


Journal

Nature microbiology
ISSN: 2058-5276
Titre abrégé: Nat Microbiol
Pays: England
ID NLM: 101674869

Informations de publication

Date de publication:
Dec 2023
Historique:
received: 23 01 2023
accepted: 04 10 2023
medline: 1 12 2023
pubmed: 17 11 2023
entrez: 17 11 2023
Statut: ppublish

Résumé

Understanding drivers of terrestrial fungal communities over large scales is an important challenge for predicting the fate of ecosystems under climate change and providing critical ecological context for bioengineering plant-microbe interactions in model systems. We conducted an extensive molecular and microscopy field study across the contiguous United States measuring natural variation in the Populus fungal microbiome among tree species, plant niche compartments and key symbionts. Our results show clear biodiversity hotspots and regional endemism of Populus-associated fungal communities explained by a combination of climate, soil and geographic factors. Modelling climate change impacts showed a deterioration of Populus mycorrhizal associations and an increase in potentially pathogenic foliar endophyte diversity and prevalence. Geographic differences among these symbiont groups in their sensitivity to environmental change are likely to influence broader forest health and ecosystem function. This dataset provides an above- and belowground atlas of Populus fungal biodiversity at a continental scale.

Identifiants

pubmed: 37973868
doi: 10.1038/s41564-023-01514-8
pii: 10.1038/s41564-023-01514-8
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

2406-2419

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer Nature Limited.

Références

Morueta-Holme, N. et al. Strong upslope shifts in Chimborazo’s vegetation over two centuries since Humboldt. Proc. Natl Acad. Sci. USA 112, 12741–12745 (2015).
pubmed: 26371298 pmcid: 4611603 doi: 10.1073/pnas.1509938112
Martiny, J. B. H. et al. Microbial biogeography: putting microorganisms on the map. Nat. Rev. Microbiol. 4, 102–112 (2006).
pubmed: 16415926 doi: 10.1038/nrmicro1341
Green, J. L., Bohannan, B. J. & Whitaker, R. J. Microbial biogeography: from taxonomy to traits. Science 320, 1039–1043 (2008).
pubmed: 18497288 doi: 10.1126/science.1153475
Vasar, M. et al. Global soil microbiomes: a new frontline of biome‐ecology research. Glob. Ecol. Biogeogr. 31, 1120–1132 (2022).
doi: 10.1111/geb.13487
Ramirez, K. S. et al. Detecting macroecological patterns in bacterial communities across independent studies of global soils. Nat. Microbiol. 3, 189–196 (2018).
pubmed: 29158606 doi: 10.1038/s41564-017-0062-x
Dickey, J. R. et al. The utility of macroecological rules for microbial biogeography. Front. Ecol. Evol. 9, 633155 (2021).
doi: 10.3389/fevo.2021.633155
Treseder, K. K. & Lennon, J. T. Fungal traits that drive ecosystem dynamics on land. Microbiol. Mol. Biol. Rev. 9, 243–262 (2015).
doi: 10.1128/MMBR.00001-15
Crowther, T. W. et al. The global soil community and its influence on biogeochemistry. Science 365, eaav0550 (2019).
pubmed: 31439761 doi: 10.1126/science.aav0550
Steidinger, B. S. et al. Ectomycorrhizal fungal diversity predicted to substantially decline due to climate changes in North American Pinaceae forests. J. Biogeogr. 47, 772–782 (2020).
doi: 10.1111/jbi.13802
Wieder, W. R., Bonan, G. B. & Allison, S. D. Global soil carbon projections are improved by modelling microbial processes. Nat. Clim. Change 3, 909–912 (2013).
doi: 10.1038/nclimate1951
Sulman, B. N. et al. Diverse mycorrhizal associations enhance terrestrial C storage in a global model. Glob. Biogeochem. Cycles 33, 501–523 (2019).
doi: 10.1029/2018GB005973
Wubs, E. J., Van der Putten, W. H., Bosch, M. & Bezemer, T. M. Soil inoculation steers restoration of terrestrial ecosystems. Nat. Plants 2, 16107 (2016).
pubmed: 27398907 doi: 10.1038/nplants.2016.107
Busby, P. E. et al. Research priorities for harnessing plant microbiomes in sustainable agriculture. PLoS Biol. 15, e2001793 (2017).
pubmed: 28350798 pmcid: 5370116 doi: 10.1371/journal.pbio.2001793
Neuenkamp, L., Prober, S. M., Price, J. N., Zobel, M. & Standish, R. J. Benefits of mycorrhizal inoculation to ecological restoration depend on plant functional type, restoration context and time. Fungal Ecol. 40, 140–149 (2019).
doi: 10.1016/j.funeco.2018.05.004
Peay, K. G., Kennedy, P. G. & Talbot, J. M. Dimensions of biodiversity in the Earth mycobiome. Nat. Rev. Microbiol. 14, 434–447 (2016).
pubmed: 27296482 doi: 10.1038/nrmicro.2016.59
Wu, B. et al. Current insights into fungal species diversity and perspective on naming the environmental DNA sequences of fungi. Mycology 10, 127–140 (2019).
pubmed: 31448147 pmcid: 6691916 doi: 10.1080/21501203.2019.1614106
Meiser, A., Balint, M. & Schmitt, I. Meta-analysis of deep-sequenced fungal communities indicates limited taxon sharing between studies and the presence of biogeographic patterns. New Phytol. 201, 623–635 (2014).
pubmed: 24111803 doi: 10.1111/nph.12532
Tedersoo, L. et al. Global diversity and geography of soil fungi. Science 346, 1256688 (2014).
pubmed: 25430773 doi: 10.1126/science.1256688
Bahram, M. et al. Structure and function of the global topsoil microbiome. Nature 560, 233–237 (2018).
pubmed: 30069051 doi: 10.1038/s41586-018-0386-6
Zimmerman, N. B. & Vitousek, P. M. Fungal endophyte communities reflect environmental structuring across a Hawaiian landscape. Proc. Natl Acad. Sci. USA 109, 13022–13027 (2012).
pubmed: 22837398 pmcid: 3420199 doi: 10.1073/pnas.1209872109
Barge, E. G., Leopold, D. R., Peay, K. G., Newcombe, G. & Busby, P. E. Differentiating spatial from environmental effects on foliar fungal communities of Populus trichocarpa. J. Biogeogr. 46, 2001–2011 (2019).
doi: 10.1111/jbi.13641
Větrovský, T. et al. A meta-analysis of global fungal distribution reveals climate-driven patterns. Nat. Commun. 10, 5142 (2019).
pubmed: 31723140 pmcid: 6853883 doi: 10.1038/s41467-019-13164-8
Davison, J. et al. Temperature and pH define the realized niche space of arbuscular mycorrhizal fungi. New Phytol. 231, 763–776 (2021).
pubmed: 33507570 doi: 10.1111/nph.17240
Talbot, J. M. et al. Endemism and functional convergence across the North American soil mycobiome. Proc. Natl Acad. Sci. USA 111, 6341–6346 (2014).
pubmed: 24733885 pmcid: 4035912 doi: 10.1073/pnas.1402584111
Hendershot, J. N., Read, Q. D., Henning, J. A., Sanders, N. J. & Classen, A. T. Consistently inconsistent drivers of microbial diversity and abundance at macroecological scales. Ecology 98, 1757–1763 (2017).
pubmed: 28380683 doi: 10.1002/ecy.1829
Davison, J. et al. Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism. Science 349, 970–973 (2015).
pubmed: 26315436 doi: 10.1126/science.aab1161
Bruns, T. & Taylor, J. Comment on ‘Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism’. Science 351, 826 (2016).
pubmed: 26912889 doi: 10.1126/science.aad4228
van der Linde, S. et al. Environment and host as large-scale controls of ectomycorrhizal fungi. Nature 558, 243–248 (2018).
pubmed: 29875410 doi: 10.1038/s41586-018-0189-9
Anagnostakis, S. L. Chestnut blight: the classical problem of an introduced pathogen. Mycologia 79, 23–37 (1987).
doi: 10.1080/00275514.1987.12025367
Mortenson, L. A. et al. Assessing spatial distribution, stand impacts and rate of Ceratocystis fimbriata induced ‘ōhi ‘a (Metrosideros polymorpha) mortality in a tropical wet forest, Hawai‘i Island, USA. For. Ecol. Manag. 377, 83–92 (2016).
doi: 10.1016/j.foreco.2016.06.026
Grünwald, N. J., Garbelotto, M., Goss, E. M., Heungens, K. & Prospero, S. Emergence of the sudden oak death pathogen Phytophthora ramorum. Trends Microbiol. 20, 131–138 (2012).
pubmed: 22326131 doi: 10.1016/j.tim.2011.12.006
Marchetti, S. B., Worrall, J. J. & Eager, T. Secondary insects and diseases contribute to sudden aspen decline in southwestern Colorado, USA. Can. J. For. Res. 41, 2315–2325 (2011).
doi: 10.1139/x11-106
Stachowicz, J. J. Mutualism, facilitation, and the structure of ecological communities. Bioscience 51, 235–246 (2001).
doi: 10.1641/0006-3568(2001)051[0235:MFATSO]2.0.CO;2
Bruno, J. F., Stachowicz, J. J. & Bertness, M. D. Inclusion of facilitation into ecological theory. Trends Ecol. Evol. 18, 119–125 (2003).
doi: 10.1016/S0169-5347(02)00045-9
Afkhami, M. E., McIntyre, P. J. & Strauss, S. Y. Mutualist‐mediated effects on species’ range limits across large geographic scales. Ecol. Lett. 17, 1265–1273 (2014).
pubmed: 25052023 doi: 10.1111/ele.12332
Van Nuland, M. E. & Peay, K. G. Symbiotic niche mapping reveals functional specialization by two ectomycorrhizal fungi that expands the host plant niche. Fungal Ecol. 46, 100960 (2020).
doi: 10.1016/j.funeco.2020.100960
Maynard, D. S. et al. Consistent trade-offs in fungal trait expression across broad spatial scales. Nat. Microbiol. 4, 846–853 (2019).
pubmed: 30804547 doi: 10.1038/s41564-019-0361-5
Malik, A. A. et al. Defining trait-based microbial strategies with consequences for soil carbon cycling under climate change. ISME J. 14, 1–9 (2020).
pubmed: 31554911 doi: 10.1038/s41396-019-0510-0
Braatne, J. H., Rood, S. B. & Heilman, P. E. Life history, ecology, and conservation of riparian cottonwoods in North America. in Biology of Populus and Its Implications for Management and Conservation (eds Stattler, R. F. et al.) 57–85 (NRC Research Press, 1996).
Sannigrahi, P., Ragauskas, A. J. & Tuskan, G. A. Poplar as a feedstock for biofuels: a review of compositional characteristics. Biofuels, Bioprod. Biorefin. 4, 209–226 (2010).
doi: 10.1002/bbb.206
Tuskan, G. A. et al. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313, 1596–1604 (2006).
pubmed: 16973872 doi: 10.1126/science.1128691
Hacquard, S. & Schadt, C. W. Towards a holistic understanding of the beneficial interactions across the Populus microbiome. New Phytol. 205, 1424–1430 (2015).
pubmed: 25422041 doi: 10.1111/nph.13133
Whitham, T. G. et al. Community and ecosystem genetics: a consequence of the extended phenotype. Ecology 84, 559–573 (2003).
doi: 10.1890/0012-9658(2003)084[0559:CAEGAC]2.0.CO;2
Post, D. M. & Palkovacs, E. P. Eco-evolutionary feedbacks in community and ecosystem ecology: interactions between the ecological theatre and the evolutionary play. Philos. Trans. R. Soc. B 364, 1629–1640 (2009).
doi: 10.1098/rstb.2009.0012
Schweitzer, J. A. et al. Plant–soil–microorganism interactions: heritable relationship between plant genotype and associated soil microorganisms. Ecology 89, 773–781 (2008).
pubmed: 18459340 doi: 10.1890/07-0337.1
Cregger, M. A. et al. Plant–microbe interactions: from genes to ecosystems using Populus as a model system. Phytobiomes J. 5, 29–38 (2021).
doi: 10.1094/PBIOMES-01-20-0009-FI
Cregger, M. A. et al. The Populus holobiont: dissecting the effects of plant niches and genotype on the microbiome. Microbiome 6, 31 (2018).
pubmed: 29433554 pmcid: 5810025 doi: 10.1186/s40168-018-0413-8
Lamit, L. J., Holeski, L. M., Flores-Renteria, L., Whitham, T. G. & Gehring, C. A. Tree genotype influences ectomycorrhizal fungal community structure: ecological and evolutionary implications. Fungal Ecol. 24, 124–134 (2016).
doi: 10.1016/j.funeco.2016.05.013
Leopold, D. R. & Busby, P. E. Host genotype and colonist arrival order jointly govern plant microbiome composition and function. Curr. Biol. 30, 3260–3266 (2020).
pubmed: 32679100 doi: 10.1016/j.cub.2020.06.011
Lamit, L. J. et al. Ectomycorrhizal fungal communities differ among parental and hybrid Populus cross types within a natural riparian habitat. Fungal Ecol. 52, 101059 (2021).
doi: 10.1016/j.funeco.2021.101059
Busby, P. E., Peay, K. G. & Newcombe, G. Common foliar fungi of Populus trichocarpa modify Melampsora rust disease severity. New Phytol. 209, 1681–1692 (2016).
pubmed: 26565565 doi: 10.1111/nph.13742
Ware, I. M. et al. Climate-driven divergence in plant–microbiome interactions generates range-wide variation in bud break phenology. Commun. Biol. 4, 748 (2021).
pubmed: 34135464 pmcid: 8209103 doi: 10.1038/s42003-021-02244-5
Knight, R. et al. Unlocking the potential of metagenomics through replicated experimental design. Nat. Biotechnol. 30, 513–520 (2012).
pubmed: 22678395 pmcid: 4902277 doi: 10.1038/nbt.2235
Rudgers, J. A. et al. Biogeography of root‐associated fungi in foundation grasses of North American plains. J. Biogeogr. 49, 22–37 (2022).
doi: 10.1111/jbi.14260
Shade, A. & Stopnisek, N. Abundance-occupancy distributions to prioritize plant core microbiome membership. Curr. Opin. Microbiol. 49, 50–58 (2019).
pubmed: 31715441 doi: 10.1016/j.mib.2019.09.008
Coleman‐Derr, D. et al. Plant compartment and biogeography affect microbiome composition in cultivated and native Agave species. New Phytol. 209, 798–811 (2016).
pubmed: 26467257 doi: 10.1111/nph.13697
De Souza, R. S. C. et al. Unlocking the bacterial and fungal communities assemblages of sugarcane microbiome. Sci. Rep. 6, 28774 (2016).
pubmed: 27358031 pmcid: 4928081 doi: 10.1038/srep28774
Hestrin, R., Lee, M. R., Whitaker, B. K. & Pett-Ridge, J. The switchgrass microbiome: a review of structure, function, and taxonomic distribution. Phytobiomes J. 5, 14–28 (2021).
doi: 10.1094/PBIOMES-04-20-0029-FI
Thiergart, T. et al. Root microbiota assembly and adaptive differentiation among European Arabidopsis populations. Nat. Ecol. Evol. 4, 122–131 (2020).
pubmed: 31900452 doi: 10.1038/s41559-019-1063-3
Stopnisek, N. & Shade, A. Persistent microbiome members in the common bean rhizosphere: an integrated analysis of space, time, and plant genotype. ISME J. 15, 2708–2722 (2021).
pubmed: 33772106 pmcid: 8397763 doi: 10.1038/s41396-021-00955-5
Toju, H. et al. Core microbiomes for sustainable agroecosystems. Nat. Plants 4, 247–257 (2018).
pubmed: 29725101 doi: 10.1038/s41477-018-0139-4
Glassman, S. I., Wang, I. J. & Bruns, T. D. Environmental filtering by pH and soil nutrients drives community assembly in fungi at fine spatial scales. Mol. Ecol. 26, 6960–6973 (2017).
pubmed: 29113014 doi: 10.1111/mec.14414
Shakya, M. et al. A multifactor analysis of fungal and bacterial community structure in the root microbiome of mature Populus deltoides trees. PLoS ONE 8, e76382 (2013).
pubmed: 24146861 pmcid: 3797799 doi: 10.1371/journal.pone.0076382
Dove, N. C., Klingeman, D. M., Carrell, A. A., Cregger, M. A. & Schadt, C. W. Fire alters plant microbiome assembly patterns: integrating the plant and soil microbial response to disturbance. New Phytol. 230, 2433–2446 (2021).
pubmed: 33525047 pmcid: 8251558 doi: 10.1111/nph.17248
Van Nuland, M. E. et al. Natural soil microbiome variation affects spring foliar phenology with consequences for plant productivity and climate‐driven range shifts. New Phytol. 232, 762–775 (2021).
pubmed: 34227117 doi: 10.1111/nph.17599
Lundberg, D. S. et al. Defining the core Arabidopsis thaliana root microbiome. Nature 488, 86–90 (2012).
pubmed: 22859206 pmcid: 4074413 doi: 10.1038/nature11237
Nuccio, E. E. et al. Climate and edaphic controllers influence rhizosphere community assembly for a wild annual grass. Ecology 97, 1307–1318 (2016).
pubmed: 27349106 doi: 10.1890/15-0882.1
Wagner, M. R. et al. Host genotype and age shape the leaf and root microbiomes of a wild perennial plant. Nat. Commun. 7, 12151 (2016).
pubmed: 27402057 pmcid: 4945892 doi: 10.1038/ncomms12151
Cahill, J. F. Jr., Elle, E., Smith, G. R. & Shore, B. H. Disruption of a belowground mutualism alters interactions between plants and their floral visitors. Ecology 89, 1791–1801 (2008).
pubmed: 18705367 doi: 10.1890/07-0719.1
Rudgers, J. A. et al. Climate disruption of plant–microbe interactions. Annu. Rev. Ecol. Evol. Syst. 51, 561–586 (2020).
doi: 10.1146/annurev-ecolsys-011720-090819
Teste, F. P., Jones, M. D. & Dickie, I. A. Dual‐mycorrhizal plants: their ecology and relevance. New Phytol. 225, 1835–1851 (2020).
pubmed: 31514244 doi: 10.1111/nph.16190
Karst, J. et al. Assessing the dual-mycorrhizal status of a widespread tree species as a model for studies on stand biogeochemistry. Mycorrhiza 31, 313–324 (2021).
pubmed: 33829296 doi: 10.1007/s00572-021-01029-2
Hultine, K. R. et al. Adaptive capacity in the foundation tree species Populus fremontii: implications for resilience to climate change and non-native species invasion in the American Southwest. Conserv. Physiol. 8, coaa061 (2020).
pubmed: 32685164 pmcid: 7359000 doi: 10.1093/conphys/coaa061
Steidinger, B. S. et al. Climatic controls of decomposition drive the global biogeography of forest–tree symbioses. Nature 569, 404–408 (2019).
pubmed: 31092941 doi: 10.1038/s41586-019-1128-0
Lu, M. & Hedin, L. O. Global plant–symbiont organization and emergence of biogeochemical cycles resolved by evolution-based trait modelling. Nat. Ecol. Evol. 3, 239–250 (2019).
pubmed: 30664701 doi: 10.1038/s41559-018-0759-0
Van Nuland, M. E. et al. Warming and disturbance alter soil microbiome diversity and function in a northern forest ecotone. FEMS Microbiol. Ecol. 96, fiaa108 (2020).
pubmed: 32472932 doi: 10.1093/femsec/fiaa108
Fernandez, C. W. et al. Ectomycorrhizal fungal response to warming is linked to poor host performance at the boreal‐temperate ecotone. Glob. Change Biol. 23, 1598–1609 (2017).
doi: 10.1111/gcb.13510
Callan, B. E. Diseases of Populus in British Columbia: A Diagnostic Manual (Canadian Forest Service, 1998).
Johnson, N. C., Graham, J. H. & Smith, F. A. Functioning of mycorrhizal associations along the mutualism–parasitism continuum. New Phytol. 135, 575–585 (1997).
doi: 10.1046/j.1469-8137.1997.00729.x
Gano-Cohen, K. A. et al. Recurrent mutualism breakdown events in a legume rhizobia metapopulation. Proc. R. Soc. B 287, 20192549 (2020).
pubmed: 31992172 pmcid: 7015337 doi: 10.1098/rspb.2019.2549
Johnson, N. C., Wilson, G. W., Bowker, M. A., Wilson, J. A. & Miller, R. M. Resource limitation is a driver of local adaptation in mycorrhizal symbioses. Proc. Natl Acad. Sci. USA 107, 2093–2098 (2010).
pubmed: 20133855 pmcid: 2836645 doi: 10.1073/pnas.0906710107
Van Nuland, M. E., Ware, I. M., Bailey, J. K. & Schweitzer, J. A. Ecosystem feedbacks contribute to geographic variation in plant–soil eco‐evolutionary dynamics across a fertility gradient. Funct. Ecol. 33, 95–106 (2019).
doi: 10.1111/1365-2435.13259
Vandenkoornhuyse, P., Quaiser, A., Duhamel, M., Le Van, A. & Dufresne, A. The importance of the microbiome of the plant holobiont. New Phytol. 206, 1196–1206 (2015).
pubmed: 25655016 doi: 10.1111/nph.13312
Ware, I. M. et al. Climate‐driven reduction of genetic variation in plant phenology alters soil communities and nutrient pools. Glob. Change Biol. 25, 1514–1528 (2019).
doi: 10.1111/gcb.14553
Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1 km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
doi: 10.1002/joc.5086
Hengl, T. et al. SoilGrids250m: global gridded soil information based on machine learning. PLoS ONE 12, e0169748 (2017).
pubmed: 28207752 pmcid: 5313206 doi: 10.1371/journal.pone.0169748
Brown S. P., Leopold D. R., & Busby P. E. Protocols for investigating the leaf mycobiome using high-throughput DNA sequencing. in Plant Pathogenic Fungi and Oomycetes. Methods in Molecular Biology Vol. 1848 (eds Ma, W. & Wolpert, T.) (Humana, 2018).
Giovannetti, M. & Mosse, B. An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol. 84, 489–500 (1980).
doi: 10.1111/j.1469-8137.1980.tb04556.x
Peay, K. G. et al. Lack of host specificity leads to independent assortment of dipterocarps and ectomycorrhizal fungi across a soil fertility gradient. Ecol. Lett. 18, 807–816 (2015).
pubmed: 26032408 doi: 10.1111/ele.12459
Toju, H., Yamamoto, S., Tanabe, A. S., Hayakawa, T. & Ishii, H. S. Network modules and hubs in plant-root fungal biomes. J. R. Soc. Interface 13, 20151097 (2016).
pubmed: 26962029 pmcid: 4843674 doi: 10.1098/rsif.2015.1097
Palmer, J. M., Jusino, M. A., Banik, M. T. & Lindner, D. L. Non-biological synthetic spike-in controls and the AMPtk software pipeline improve mycobiome data. PeerJ 6, e4925 (2018).
pubmed: 29868296 pmcid: 5978393 doi: 10.7717/peerj.4925
Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).
pubmed: 27214047 pmcid: 4927377 doi: 10.1038/nmeth.3869
Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 17, 10–12 (2011).
doi: 10.14806/ej.17.1.200
Abarenkov, K. et al. The UNITE database for molecular identification of fungi—recent updates and future perspectives. New Phytol. 186, 281–285 (2010).
pubmed: 20409185 doi: 10.1111/j.1469-8137.2009.03160.x
Glassman, S. I. & Martiny, J. B. Broadscale ecological patterns are robust to use of exact sequence variants versus operational taxonomic units. MSphere 3, e00148-18 (2018).
pubmed: 30021874 pmcid: 6052340 doi: 10.1128/mSphere.00148-18
Wright, E. S. Using DECIPHER v2.0 to analyze big biological sequence data in R. R. J. 8, 352–359 (2016).
doi: 10.32614/RJ-2016-025
McLaren, M. mikemc/speedyseq: speedyseq v0.2.0 (version v0.2.0). Zenodo https://doi.org/10.5281/zenodo.3923184 (2020).
Tipton, L., Zahn, G. L., Darcy, J. L., Amend, A. S. & Hynson, N. A. Hawaiian fungal amplicon sequence variants reveal otherwise hidden biogeography. Microb. Ecol. 83, 48–57 (2022).
pubmed: 33742230 doi: 10.1007/s00248-021-01730-x
McMurdie, P. J. & Holmes, S. Waste not, want not: why rarefying microbiome data is inadmissible. PLoS Comput. Biol. 10, e1003531 (2014).
pubmed: 24699258 pmcid: 3974642 doi: 10.1371/journal.pcbi.1003531
Weiss, S. et al. Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome 5, 27 (2017).
pubmed: 28253908 pmcid: 5335496 doi: 10.1186/s40168-017-0237-y
Põlme, S. et al. FungalTraits: a user-friendly traits database of fungi and fungus-like stramenopiles. Fungal Divers. 105, 1–16 (2020).
doi: 10.1007/s13225-020-00466-2
Delavaux, C. S. et al. Utility of large subunit for environmental sequencing of arbuscular mycorrhizal fungi: a new reference database and pipeline. New Phytol. 229, 3048–3052 (2020).
pubmed: 33190292 doi: 10.1111/nph.17080
Oksanen, J., et al. vegan: community ecology package. R package version 2.5-7. R Foundation https://CRAN.R-project.org/package=vegan (2020).
Wood, S. N. Generalized Additive Models: An Introduction with R 2nd edn (Chapman and Hall/CRC, 2017).
Fitzpatrick, M., Mokany, K., Manion, G., Nieto-Lugilde, D. & Ferrier, S. gdm: generalized dissimilarity modeling. R package version 1.5.0-3. R Foundation https://CRAN.R-project.org/package=gdm (2022).
Lê, S., Josse, J. & Husson, F. FactoMineR: an R package for multivariate analysis. J. Stat. Softw. 25, 1–18 (2008).
doi: 10.18637/jss.v025.i01
Baker, M. E., King, R. S., & Kahle, D. TITAN2: Threshold Indicator Taxa Analysis. R package version 2.4.1. R Foundation https://CRAN.R-project.org/package=TITAN2 (2020).

Auteurs

Michael E Van Nuland (ME)

Department of Biology, Stanford University, Stanford, CA, USA. michael@spun.earth.
Society for the Protection of Underground Networks, SPUN, Dover, DE, USA. michael@spun.earth.

S Caroline Daws (SC)

Department of Biology, Stanford University, Stanford, CA, USA.

Joseph K Bailey (JK)

Ecology and Evolutionary Biology Department, University of Tennessee, Knoxville, TN, USA.

Jennifer A Schweitzer (JA)

Ecology and Evolutionary Biology Department, University of Tennessee, Knoxville, TN, USA.

Posy E Busby (PE)

Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA.

Kabir G Peay (KG)

Department of Biology, Stanford University, Stanford, CA, USA.
Department of Earth System Science, Stanford University, Stanford, CA, USA.

Articles similaires

Populus Soil Microbiology Soil Microbiota Fungi
India Carbon Sequestration Environmental Monitoring Carbon Biomass
Lakes Salinity Archaea Bacteria Microbiota
Rivers Turkey Biodiversity Environmental Monitoring Animals

Classifications MeSH