Vitamin B
Journal
Nature metabolism
ISSN: 2522-5812
Titre abrégé: Nat Metab
Pays: Germany
ID NLM: 101736592
Informations de publication
Date de publication:
Nov 2023
Nov 2023
Historique:
received:
11
10
2022
accepted:
27
09
2023
medline:
27
11
2023
pubmed:
17
11
2023
entrez:
17
11
2023
Statut:
ppublish
Résumé
Transient reprogramming by the expression of OCT4, SOX2, KLF4 and MYC (OSKM) is a therapeutic strategy for tissue regeneration and rejuvenation, but little is known about its metabolic requirements. Here we show that OSKM reprogramming in mice causes a global depletion of vitamin B
Identifiants
pubmed: 37973897
doi: 10.1038/s42255-023-00916-6
pii: 10.1038/s42255-023-00916-6
pmc: PMC10663163
doi:
Substances chimiques
Vitamin B 12
P6YC3EG204
Vitamins
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1911-1930Informations de copyright
© 2023. The Author(s).
Références
Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).
doi: 10.1016/j.cell.2006.07.024
pubmed: 16904174
Taguchi, J. & Yamada, Y. In vivo reprogramming for tissue regeneration and organismal rejuvenation. Curr. Opin. Genet. Dev. 46, 132–140 (2017).
doi: 10.1016/j.gde.2017.07.008
pubmed: 28779646
Abad, M. et al. Reprogramming in vivo produces teratomas and iPS cells with totipotency features. Nature 502, 340–345 (2013).
doi: 10.1038/nature12586
pubmed: 24025773
Ocampo, A. et al. In vivo amelioration of age-associated hallmarks by partial reprogramming. Cell 167, 1719–1733 (2016).
doi: 10.1016/j.cell.2016.11.052
pubmed: 27984723
pmcid: 5679279
Doeser, M. C., Schöler, H. R. & Wu, G. Reduction of fibrosis and scar formation by partial reprogramming in vivo. Stem Cells 36, 1216–1225 (2018).
doi: 10.1002/stem.2842
pubmed: 29761584
Lu, Y. et al. Reprogramming to recover youthful epigenetic information and restore vision. Nature 588, 124–129 (2020).
doi: 10.1038/s41586-020-2975-4
pubmed: 33268865
pmcid: 7752134
Chen, Y. et al. Reversible reprogramming of cardiomyocytes to a fetal state drives heart regeneration in mice. Science 373, 1537–1540 (2021).
doi: 10.1126/science.abg5159
pubmed: 34554778
Browder, K. C. et al. In vivo partial reprogramming alters age-associated molecular changes during physiological aging in mice. Nat. Aging 2, 243–253 (2022).
doi: 10.1038/s43587-022-00183-2
pubmed: 37118377
Chondronasiou, D. et al. Multi-omic rejuvenation of naturally aged tissues by a single cycle of transient reprogramming. Aging Cell 21, e13578 (2022).
doi: 10.1111/acel.13578
pubmed: 35235716
pmcid: 8920440
Ohnishi, K. et al. Premature termination of reprogramming in vivo leads to cancer development through altered epigenetic regulation. Cell 156, 663–677 (2014).
doi: 10.1016/j.cell.2014.01.005
pubmed: 24529372
Shibata, H. et al. In vivo reprogramming drives Kras-induced cancer development. Nat. Commun. 9, 2081 (2018).
doi: 10.1038/s41467-018-04449-5
pubmed: 29802314
pmcid: 5970190
Shyh-Chang, N. et al. Influence of threonine metabolism on S-adenosylmethionine and histone methylation. Science 339, 222–226 (2013).
doi: 10.1126/science.1226603
pubmed: 23118012
Fernández-Arroyo, S. et al. Activation of the methylation cycle in cells reprogrammed into a stem cell-like state. Oncoscience 2, 958–967 (2016).
doi: 10.18632/oncoscience.280
pubmed: 26909364
pmcid: 4735514
Degnan, P. H., Taga, M. E. & Goodman, A. L. Vitamin B12 as a modulator of gut microbial ecology. Cell Metab. 20, 769–778 (2014).
doi: 10.1016/j.cmet.2014.10.002
pubmed: 25440056
pmcid: 4260394
Nicholson, J. K. et al. Host-gut microbiota metabolic interactions. Science 336, 1262–1267 (2012).
doi: 10.1126/science.1223813
pubmed: 22674330
Mosteiro, L. et al. Tissue damage and senescence provide critical signals for cellular reprogramming in vivo. Science 354, aaf4445 (2016).
doi: 10.1126/science.aaf4445
pubmed: 27884981
Melendez, E. et al. Natural killer cells act as an extrinsic barrier for in vivo reprogramming. Development https://doi.org/10.1242/dev.200361 (2022).
Kennedy, E. A., King, K. Y. & Baldridge, M. T. Mouse microbiota models: comparing germ-free mice and antibiotics treatment as tools for modifying gut bacteria. Front. Physiol. 9, 1534 (2018).
doi: 10.3389/fphys.2018.01534
pubmed: 30429801
pmcid: 6220354
Chondronasiou, D. et al. Deciphering the roadmap of in vivo reprogramming toward pluripotency. Stem Cell Rep. 17, 2501–2517 (2022).
doi: 10.1016/j.stemcr.2022.09.009
Levy, M. et al. Microbiota-modulated metabolites shape the intestinal microenvironment by regulating NLRP6 inflammasome signaling. Cell 163, 1428–1443 (2015).
doi: 10.1016/j.cell.2015.10.048
pubmed: 26638072
pmcid: 5665753
Chang, C. S. et al. Identification of a gut microbiota member that ameliorates DSS-induced colitis in intestinal barrier enhanced Dusp6-deficient mice. Cell Rep. 37, 110016 (2021).
doi: 10.1016/j.celrep.2021.110016
pubmed: 34818535
Yui, S. et al. YAP/TAZ-dependent reprogramming of colonic epithelium links ECM remodeling to tissue regeneration. Cell Stem Cell 22, 35–49 (2018).
doi: 10.1016/j.stem.2017.11.001
pubmed: 29249464
pmcid: 5766831
Moschen, A. R. et al. Lipocalin 2 protects from inflammation and tumorigenesis associated with gut microbiota alterations. Cell Host Microbe 19, 455–469 (2016).
doi: 10.1016/j.chom.2016.03.007
pubmed: 27078067
Degnan, P. H., Barry, N. A., Mok, K. C., Taga, M. E. & Goodman, A. L. Human gut microbes use multiple transporters to distinguish vitamin B
doi: 10.1016/j.chom.2013.12.007
pubmed: 24439897
pmcid: 3923405
Martens, H., Barg, M., Warren, D. & Jah, J.-H. Microbial production of vitamin B 12. Appl. Microbiol. Biotechnol. 58, 275–285 (2002).
doi: 10.1007/s00253-001-0902-7
pubmed: 11935176
Green, R. et al. Vitamin B
doi: 10.1038/nrdp.2017.40
pubmed: 28660890
Kornerup, L. S. et al. Tissue distribution of oral vitamin B
doi: 10.1007/s00394-017-1424-0
pubmed: 28321545
Shin, O.-H. et al. Methyl-group donors cannot prevent apoptotic death of rat hepatocytes induced by choline-deficiency. J. Cell. Biochem. 64, 196–208 (1997).
doi: 10.1002/(SICI)1097-4644(199702)64:2<196::AID-JCB3>3.0.CO;2-S
pubmed: 9027580
Birn, H. et al. Megalin is essential for renal proximal tubule reabsorption and accumulation of transcobalamin-B
doi: 10.1152/ajprenal.00206.2000
Scott, J. S. D., Treston, A. M., Bowman, E. P. W., Owens, J. A. & Cooksley, W. G. The regulatory roles of liver and kidney in cobalamin (vitamin B
doi: 10.1042/cs0670299
Okuda, K. Relationship between intake of vitamin B
doi: 10.1093/jn/77.2.131
pubmed: 14481608
Rossi, M., Amaretti, A. & Raimondi, S. Folate production by probiotic bacteria. Nutrients 3, 118–134 (2011).
doi: 10.3390/nu3010118
pubmed: 22254078
pmcid: 3257725
Sanderson, S. M., Gao, X., Dai, Z. & Locasale, J. W. Methionine metabolism in health and cancer: a nexus of diet and precision medicine. Nat. Rev. Cancer 19, 625–637 (2019).
doi: 10.1038/s41568-019-0187-8
pubmed: 31515518
Shiraki, N. et al. Methionine metabolism regulates maintenance and differentiation of human pluripotent stem cells. Cell Metab. 19, 780–794 (2014).
doi: 10.1016/j.cmet.2014.03.017
pubmed: 24746804
Wang, J. et al. Dependence of mouse embryonic stem cells on threonine catabolism. Science 325, 435–439 (2009).
doi: 10.1126/science.1173288
pubmed: 19589965
pmcid: 4373593
Bravo, A. C. et al. Analysis of S-adenosylmethionine and S-adenosylhomocysteine: method optimisation and profiling in healthy adults upon short-term dietary intervention. Metabolites 12, 373 (2022).
doi: 10.3390/metabo12050373
pubmed: 35629877
pmcid: 9143066
Lildballe, D. L., Mutti, E., Birn, H. & Nexo, E. Maximal load of the vitamin B12 transport system: a study on mice treated for four weeks with high-dose vitamin B
doi: 10.1371/journal.pone.0046657
pubmed: 23049711
pmcid: 3462184
Beedholm-Ebsen, R. et al. Identification of multidrug resistance protein 1 (MRP1/ABCC1) as a molecular gate for cellular export of cobalamin. Blood 115, 1632–1639 (2010).
doi: 10.1182/blood-2009-07-232587
pubmed: 19897579
Kokkinakis, D. M. et al. Mitotic arrest, apoptosis, and sensitization to chemotherapy of melanomas by methionine deprivation stress. Mol. Cancer Res. 4, 575–589 (2006).
doi: 10.1158/1541-7786.MCR-05-0240
pubmed: 16908595
Zviran, A. et al. Deterministic somatic cell reprogramming involves continuous transcriptional changes governed by myc and epigenetic-driven modules. Cell Stem Cell 24, 328–341 (2019).
doi: 10.1016/j.stem.2018.11.014
pubmed: 30554962
National Research Council (US) Subcommittee on Laboratory Animal Nutrition. Nutrient Requirements of Laboratory Animals (National Academies Press, 1995). https://doi.org/10.17226/4758
Mentch, S. J. et al. Histone methylation dynamics and gene regulation occur through the sensing of one-carbon metabolism. Cell Metab. 22, 861–873 (2015).
doi: 10.1016/j.cmet.2015.08.024
pubmed: 26411344
pmcid: 4635069
Ye, C., Sutter, B. M., Wang, Y., Kuang, Z. & Tu, B. P. A metabolic function for phospholipid and histone methylation. Mol. Cell 66, 180–193 (2017).
doi: 10.1016/j.molcel.2017.02.026
pubmed: 28366644
pmcid: 5482412
Chronis, C. et al. Cooperative binding of transcription factors orchestrates reprogramming. Cell 168, 442–459 (2017).
doi: 10.1016/j.cell.2016.12.016
pubmed: 28111071
pmcid: 5302508
van den Hurk, M. et al. Transcriptional and epigenetic mechanisms of cellular reprogramming to induced pluripotency. Epigenomics 8, 1131–1149 (2016).
doi: 10.2217/epi-2016-0032
pubmed: 27419933
pmcid: 5514980
Chu, C. H. et al. KDM4B as a target for prostate cancer: structural analysis and selective inhibition by a novel inhibitor. J. Med. Chem. 57, 5975–5985 (2014).
doi: 10.1021/jm500249n
pubmed: 24971742
pmcid: 4216216
Edmunds, J. W., Mahadevan, L. C. & Clayton, A. L. Dynamic histone H3 methylation during gene induction: HYPB/Setd2 mediates all H3K36 trimethylation. EMBO J. 27, 406–420 (2008).
doi: 10.1038/sj.emboj.7601967
pubmed: 18157086
Schwarz, B. A. et al. Prospective isolation of poised iPSC intermediates reveals principles of cellular reprogramming. Cell Stem Cell 23, 289–305 (2018).
doi: 10.1016/j.stem.2018.06.013
pubmed: 30017590
pmcid: 6086589
Li, B. et al. Infrequently transcribed long genes depend on the Set2/Rpd3S pathway for accurate transcription. Genes Dev. 21, 1422–1430 (2007).
doi: 10.1101/gad.1539307
pubmed: 17545470
pmcid: 1877753
Neri, F. et al. Intragenic DNA methylation prevents spurious transcription initiation. Nature 543, 72–77 (2017).
doi: 10.1038/nature21373
pubmed: 28225755
Barral, A. et al. SETDB1/NSD-dependent H3K9me3/H3K36me3 dual heterochromatin maintains gene expression profiles by bookmarking poised enhancers. Mol. Cell 82, 816–832 (2022).
doi: 10.1016/j.molcel.2021.12.037
pubmed: 35081363
pmcid: 8860380
McCauley, B. S. et al. Altered chromatin states drive cryptic transcription in aging mammalian stem cells. Nat. Aging 1, 684–697 (2021).
doi: 10.1038/s43587-021-00091-x
pubmed: 34746802
pmcid: 8570536
Huang, C. & Zhu, B. Roles of H3K36-specific histone methyltransferases in transcription: antagonizing silencing and safeguarding transcription fidelity. Biophys. Rep. 4, 170–177 (2018).
doi: 10.1007/s41048-018-0063-1
pubmed: 30310854
Pu, M. et al. Trimethylation of Lys36 on H3 restricts gene expression change during aging and impacts life span. Genes Dev. 29, 718–731 (2015).
doi: 10.1101/gad.254144.114
pubmed: 25838541
pmcid: 4387714
Sen, P. et al. H3K36 methylation promotes longevity by enhancing transcriptional fidelity. Genes Dev. 29, 1362–1376 (2015).
doi: 10.1101/gad.263707.115
pubmed: 26159996
pmcid: 4511212
Carrozza, M. J. et al. Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription. Cell 123, 581–592 (2005).
doi: 10.1016/j.cell.2005.10.023
pubmed: 16286007
Ang, Y.-S. et al. Wdr5 mediates self-renewal and reprogramming via the embryonic stem cell core transcriptional network. Cell 145, 183–197 (2011).
doi: 10.1016/j.cell.2011.03.003
pubmed: 21477851
pmcid: 3097468
Iismaa, S. E. et al. Comparative regenerative mechanisms across different mammalian tissues. npj Regen. Med. 3, 6 (2018).
doi: 10.1038/s41536-018-0044-5
pubmed: 29507774
pmcid: 5824955
Ayyaz, A. et al. Single-cell transcriptomes of the regenerating intestine reveal a revival stem cell. Nature https://doi.org/10.1038/s41586-019-1154-y (2019).
doi: 10.1038/s41586-019-1154-y
pubmed: 31019301
Nusse, Y. M. et al. Parasitic helminths induce fetal-like reversion in the intestinal stem cell niche. Nature 559, 109–113 (2018).
doi: 10.1038/s41586-018-0257-1
pubmed: 29950724
pmcid: 6042247
Perše, M. & Cerar, A. Dextran sodium sulphate colitis mouse model: traps and tricks. J. Biomed. Biotechnol. 2012, 718617 (2012).
doi: 10.1155/2012/718617
pubmed: 22665990
pmcid: 3361365
Czarnewski, P. et al. Conserved transcriptomic profile between mouse and human colitis allows unsupervised patient stratification. Nat. Commun. 10, 2892 (2019).
doi: 10.1038/s41467-019-10769-x
pubmed: 31253778
pmcid: 6598981
Haberman, Y. et al. Ulcerative colitis mucosal transcriptomes reveal mitochondriopathy and personalized mechanisms underlying disease severity and treatment response. Nat. Commun. 10, 38 (2019).
doi: 10.1038/s41467-018-07841-3
pubmed: 30604764
pmcid: 6318335
Mentch, S. J. & Locasale, J. W. One-carbon metabolism and epigenetics: understanding the specificity. Ann. N. Y. Acad. Sci. https://doi.org/10.1111/nyas.12956 (2016).
doi: 10.1111/nyas.12956
pubmed: 26647078
Boon, R. Metabolic fuel for epigenetic: nuclear production meets local consumption. Front. Genet. 12, 768996 (2021).
doi: 10.3389/fgene.2021.768996
pubmed: 34804127
pmcid: 8595138
Ye, C. & Tu, B. P. Sink into the epigenome: histones as repositories that influence cellular metabolism. Trends Endocrinol. Metab. 29, 626–637 (2018).
doi: 10.1016/j.tem.2018.06.002
pubmed: 30001904
pmcid: 6109460
Eram, M. S. et al. Kinetic characterization of human histone H3 lysine 36 methyltransferases, ASH1L and SETD2. Biochim. Biophys. Acta 1850, 1842–1848 (2015).
doi: 10.1016/j.bbagen.2015.05.013
pubmed: 26002201
Lurz, E. et al. Vitamin B
doi: 10.3389/fnut.2020.00083
pubmed: 32582756
pmcid: 7291859
Benight, N. M. et al. B-vitamin deficiency is protective against DSS-induced colitis in mice. Am. J. Physiol. Gastrointest. Liver Physiol. 301, G249–G259 (2011).
doi: 10.1152/ajpgi.00076.2011
pubmed: 21596995
pmcid: 3154603
Tamura, J. et al. Immunomodulation by vitamin B
doi: 10.1046/j.1365-2249.1999.00870.x
pubmed: 10209501
pmcid: 1905232
Liu, M. et al. The histone methyltransferase SETD2 modulates oxidative stress to attenuate experimental colitis. Redox Biol. 43, 102004 (2021).
doi: 10.1016/j.redox.2021.102004
pubmed: 34020310
pmcid: 8141928
Ward, M. G. et al. Prevalence and risk factors for functional vitamin B
doi: 10.1097/MIB.0000000000000559
pubmed: 26296064
Zheng, S. et al. Association of ulcerative colitis with transcobalamin II gene polymorphisms and serum homocysteine, vitamin B
doi: 10.1007/s00251-017-0998-2
pubmed: 28526947
Leinenkugel, G. et al. Sca-1 is a marker for cell plasticity in murine pancreatic epithelial cells and induced by IFN-β in vitro. Pancreatology 22, 294–303 (2022).
doi: 10.1016/j.pan.2022.01.006
pubmed: 35120820
Dekel, B. et al. Isolation and characterization of nontubular sca-1+lin- multipotent stem/progenitor cells from adult mouse kidney. J. Am. Soc. Nephrol. 17, 3300–3314 (2006).
doi: 10.1681/ASN.2005020195
pubmed: 17093069
Camarata, T. D., Weaver, G. C., Vasilyev, A. & Arnaout, M. A. Negative regulation of TGFβ signaling by stem cell antigen-1 protects against ischemic acute kidney injury. PLoS ONE 10, e0129561 (2015).
doi: 10.1371/journal.pone.0129561
pubmed: 26053644
pmcid: 4460127
Bender Kim, C. F. et al. Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 121, 823–835 (2005).
doi: 10.1016/j.cell.2005.03.032
Louie, S. M. et al. Progenitor potential of lung epithelial organoid cells in a transplantation model. Cell Rep. 39, 110662 (2022).
doi: 10.1016/j.celrep.2022.110662
pubmed: 35417699
pmcid: 9063850
Zhang, W. et al. Fluorinated N, N-dialkylaminostilbenes repress colon cancer by targeting methionine S-adenosyltransferase 2A. ACS Chem. Biol. 8, 796–803 (2013).
doi: 10.1021/cb3005353
pubmed: 23363077
pmcid: 3631441
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
doi: 10.1093/bioinformatics/bts635
pubmed: 23104886
Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).
doi: 10.1038/nmeth.3869
pubmed: 27214047
pmcid: 4927377
Menzel, P., Ng, K. L. & Krogh, A. Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nat. Commun. 7, 11257 (2016).
doi: 10.1038/ncomms11257
pubmed: 27071849
pmcid: 4833860
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
doi: 10.1186/s13059-014-0550-8
pubmed: 25516281
pmcid: 4302049
Li, D., Liu, C.-M., Luo, R., Sadakane, K. & Lam, T.-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2015).
doi: 10.1093/bioinformatics/btv033
pubmed: 25609793
Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11, 119 (2010).
doi: 10.1186/1471-2105-11-119
pubmed: 20211023
pmcid: 2848648
Huerta-Cepas, J. et al. EggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47, D309–D314 (2019).
doi: 10.1093/nar/gky1085
pubmed: 30418610
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
doi: 10.1038/nmeth.1923
pubmed: 22388286
pmcid: 3322381
Carbon, S. et al. AmiGO: online access to ontology and annotation data. Bioinformatics 25, 288–289 (2009).
doi: 10.1093/bioinformatics/btn615
pubmed: 19033274
Morton, J. T. et al. Establishing microbial composition measurement standards with reference frames. Nat. Commun. 10, 2719 (2019).
doi: 10.1038/s41467-019-10656-5
pubmed: 31222023
pmcid: 6586903
Viltard, M. et al. The metabolomic signature of extreme longevity: naked mole rats versus mice. Aging 11, 4783–4800 (2019).
doi: 10.18632/aging.102116
pubmed: 31346149
pmcid: 6682510
Pang, Z., Chong, J., Li, S. & Xia, J. MetaboAnalystR 3.0: toward an optimized workflow for global metabolomics. Metabolites 10, 186 (2020).
doi: 10.3390/metabo10050186
pubmed: 32392884
pmcid: 7281575
Peng, X. et al. Inhibition of phosphoinositide 3-kinase ameliorates dextran sodium sulfate-induced colitis in mice. J. Pharmacol. Exp. Ther. 332, 46–56 (2010).
doi: 10.1124/jpet.109.153494
pubmed: 19828878
Bankhead, P. et al. QuPath: open source software for digital pathology image analysis. Sci. Rep. 7, 16878 (2017).
doi: 10.1038/s41598-017-17204-5
pubmed: 29203879
pmcid: 5715110
Li, H. et al. The Ink4/Arf locus is a barrier for iPS cell reprogramming. Nature 460, 1136–1139 (2009).
doi: 10.1038/nature08290
pubmed: 19668188
pmcid: 3578184
Subramanian, A. et al. Gene-set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).
doi: 10.1073/pnas.0506580102
pubmed: 16199517
pmcid: 1239896
R Development Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).
Tarasov, A., Vilella, A. J., Cuppen, E., Nijman, I. J. & Prins, P. Sambamba: fast processing of NGS alignment formats. Bioinformatics 31, 2032–2034 (2015).
doi: 10.1093/bioinformatics/btv098
pubmed: 25697820
pmcid: 4765878
Liao, Y., Smyth, G. K. & Shi, W. The R package Rsubread is easier, faster, cheaper and better for alignment and quantification of RNA sequencing reads. Nucleic Acids Res. 47, e47 (2019).
doi: 10.1093/nar/gkz114
pubmed: 30783653
pmcid: 6486549
Ashburner, M. et al. Gene Ontology: tool for the unification of biology. the Gene Ontology Consortium. Nat. Genet. 25, 25–29 (2000).
doi: 10.1038/75556
pubmed: 10802651
pmcid: 3037419
Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).
doi: 10.1186/gb-2009-10-3-r25
pubmed: 19261174
pmcid: 2690996
Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
doi: 10.1093/bioinformatics/btp352
pubmed: 19505943
pmcid: 2723002
Lawrence, M. et al. Software for computing and annotating genomic ranges. PLoS Comput. Biol. 9, e1003118 (2013).
doi: 10.1371/journal.pcbi.1003118
pubmed: 23950696
pmcid: 3738458
Gu, Z., Eils, R., Schlesner, M. & Ishaque, N. EnrichedHeatmap: an R/Bioconductor package for comprehensive visualization of genomic signal associations. BMC Genomics 19, 234 (2018).
doi: 10.1186/s12864-018-4625-x
pubmed: 29618320
pmcid: 5885322
Thorvaldsdottir, H., Robinson, J. T. & Mesirov, J. P. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief. Bioinform. 14, 178–192 (2013).
doi: 10.1093/bib/bbs017
pubmed: 22517427
Robinson, J. T. et al. Integrative genomics viewer. Nat. Biotechnol. https://doi.org/10.1038/nbt.1754 (2011).
doi: 10.1038/nbt.1754
pubmed: 21804560
pmcid: 3152676