Vitamin B


Journal

Nature metabolism
ISSN: 2522-5812
Titre abrégé: Nat Metab
Pays: Germany
ID NLM: 101736592

Informations de publication

Date de publication:
Nov 2023
Historique:
received: 11 10 2022
accepted: 27 09 2023
medline: 27 11 2023
pubmed: 17 11 2023
entrez: 17 11 2023
Statut: ppublish

Résumé

Transient reprogramming by the expression of OCT4, SOX2, KLF4 and MYC (OSKM) is a therapeutic strategy for tissue regeneration and rejuvenation, but little is known about its metabolic requirements. Here we show that OSKM reprogramming in mice causes a global depletion of vitamin B

Identifiants

pubmed: 37973897
doi: 10.1038/s42255-023-00916-6
pii: 10.1038/s42255-023-00916-6
pmc: PMC10663163
doi:

Substances chimiques

Vitamin B 12 P6YC3EG204
Vitamins 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1911-1930

Informations de copyright

© 2023. The Author(s).

Références

Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).
doi: 10.1016/j.cell.2006.07.024 pubmed: 16904174
Taguchi, J. & Yamada, Y. In vivo reprogramming for tissue regeneration and organismal rejuvenation. Curr. Opin. Genet. Dev. 46, 132–140 (2017).
doi: 10.1016/j.gde.2017.07.008 pubmed: 28779646
Abad, M. et al. Reprogramming in vivo produces teratomas and iPS cells with totipotency features. Nature 502, 340–345 (2013).
doi: 10.1038/nature12586 pubmed: 24025773
Ocampo, A. et al. In vivo amelioration of age-associated hallmarks by partial reprogramming. Cell 167, 1719–1733 (2016).
doi: 10.1016/j.cell.2016.11.052 pubmed: 27984723 pmcid: 5679279
Doeser, M. C., Schöler, H. R. & Wu, G. Reduction of fibrosis and scar formation by partial reprogramming in vivo. Stem Cells 36, 1216–1225 (2018).
doi: 10.1002/stem.2842 pubmed: 29761584
Lu, Y. et al. Reprogramming to recover youthful epigenetic information and restore vision. Nature 588, 124–129 (2020).
doi: 10.1038/s41586-020-2975-4 pubmed: 33268865 pmcid: 7752134
Chen, Y. et al. Reversible reprogramming of cardiomyocytes to a fetal state drives heart regeneration in mice. Science 373, 1537–1540 (2021).
doi: 10.1126/science.abg5159 pubmed: 34554778
Browder, K. C. et al. In vivo partial reprogramming alters age-associated molecular changes during physiological aging in mice. Nat. Aging 2, 243–253 (2022).
doi: 10.1038/s43587-022-00183-2 pubmed: 37118377
Chondronasiou, D. et al. Multi-omic rejuvenation of naturally aged tissues by a single cycle of transient reprogramming. Aging Cell 21, e13578 (2022).
doi: 10.1111/acel.13578 pubmed: 35235716 pmcid: 8920440
Ohnishi, K. et al. Premature termination of reprogramming in vivo leads to cancer development through altered epigenetic regulation. Cell 156, 663–677 (2014).
doi: 10.1016/j.cell.2014.01.005 pubmed: 24529372
Shibata, H. et al. In vivo reprogramming drives Kras-induced cancer development. Nat. Commun. 9, 2081 (2018).
doi: 10.1038/s41467-018-04449-5 pubmed: 29802314 pmcid: 5970190
Shyh-Chang, N. et al. Influence of threonine metabolism on S-adenosylmethionine and histone methylation. Science 339, 222–226 (2013).
doi: 10.1126/science.1226603 pubmed: 23118012
Fernández-Arroyo, S. et al. Activation of the methylation cycle in cells reprogrammed into a stem cell-like state. Oncoscience 2, 958–967 (2016).
doi: 10.18632/oncoscience.280 pubmed: 26909364 pmcid: 4735514
Degnan, P. H., Taga, M. E. & Goodman, A. L. Vitamin B12 as a modulator of gut microbial ecology. Cell Metab. 20, 769–778 (2014).
doi: 10.1016/j.cmet.2014.10.002 pubmed: 25440056 pmcid: 4260394
Nicholson, J. K. et al. Host-gut microbiota metabolic interactions. Science 336, 1262–1267 (2012).
doi: 10.1126/science.1223813 pubmed: 22674330
Mosteiro, L. et al. Tissue damage and senescence provide critical signals for cellular reprogramming in vivo. Science 354, aaf4445 (2016).
doi: 10.1126/science.aaf4445 pubmed: 27884981
Melendez, E. et al. Natural killer cells act as an extrinsic barrier for in vivo reprogramming. Development https://doi.org/10.1242/dev.200361 (2022).
Kennedy, E. A., King, K. Y. & Baldridge, M. T. Mouse microbiota models: comparing germ-free mice and antibiotics treatment as tools for modifying gut bacteria. Front. Physiol. 9, 1534 (2018).
doi: 10.3389/fphys.2018.01534 pubmed: 30429801 pmcid: 6220354
Chondronasiou, D. et al. Deciphering the roadmap of in vivo reprogramming toward pluripotency. Stem Cell Rep. 17, 2501–2517 (2022).
doi: 10.1016/j.stemcr.2022.09.009
Levy, M. et al. Microbiota-modulated metabolites shape the intestinal microenvironment by regulating NLRP6 inflammasome signaling. Cell 163, 1428–1443 (2015).
doi: 10.1016/j.cell.2015.10.048 pubmed: 26638072 pmcid: 5665753
Chang, C. S. et al. Identification of a gut microbiota member that ameliorates DSS-induced colitis in intestinal barrier enhanced Dusp6-deficient mice. Cell Rep. 37, 110016 (2021).
doi: 10.1016/j.celrep.2021.110016 pubmed: 34818535
Yui, S. et al. YAP/TAZ-dependent reprogramming of colonic epithelium links ECM remodeling to tissue regeneration. Cell Stem Cell 22, 35–49 (2018).
doi: 10.1016/j.stem.2017.11.001 pubmed: 29249464 pmcid: 5766831
Moschen, A. R. et al. Lipocalin 2 protects from inflammation and tumorigenesis associated with gut microbiota alterations. Cell Host Microbe 19, 455–469 (2016).
doi: 10.1016/j.chom.2016.03.007 pubmed: 27078067
Degnan, P. H., Barry, N. A., Mok, K. C., Taga, M. E. & Goodman, A. L. Human gut microbes use multiple transporters to distinguish vitamin B
doi: 10.1016/j.chom.2013.12.007 pubmed: 24439897 pmcid: 3923405
Martens, H., Barg, M., Warren, D. & Jah, J.-H. Microbial production of vitamin B 12. Appl. Microbiol. Biotechnol. 58, 275–285 (2002).
doi: 10.1007/s00253-001-0902-7 pubmed: 11935176
Green, R. et al. Vitamin B
doi: 10.1038/nrdp.2017.40 pubmed: 28660890
Kornerup, L. S. et al. Tissue distribution of oral vitamin B
doi: 10.1007/s00394-017-1424-0 pubmed: 28321545
Shin, O.-H. et al. Methyl-group donors cannot prevent apoptotic death of rat hepatocytes induced by choline-deficiency. J. Cell. Biochem. 64, 196–208 (1997).
doi: 10.1002/(SICI)1097-4644(199702)64:2<196::AID-JCB3>3.0.CO;2-S pubmed: 9027580
Birn, H. et al. Megalin is essential for renal proximal tubule reabsorption and accumulation of transcobalamin-B
doi: 10.1152/ajprenal.00206.2000
Scott, J. S. D., Treston, A. M., Bowman, E. P. W., Owens, J. A. & Cooksley, W. G. The regulatory roles of liver and kidney in cobalamin (vitamin B
doi: 10.1042/cs0670299
Okuda, K. Relationship between intake of vitamin B
doi: 10.1093/jn/77.2.131 pubmed: 14481608
Rossi, M., Amaretti, A. & Raimondi, S. Folate production by probiotic bacteria. Nutrients 3, 118–134 (2011).
doi: 10.3390/nu3010118 pubmed: 22254078 pmcid: 3257725
Sanderson, S. M., Gao, X., Dai, Z. & Locasale, J. W. Methionine metabolism in health and cancer: a nexus of diet and precision medicine. Nat. Rev. Cancer 19, 625–637 (2019).
doi: 10.1038/s41568-019-0187-8 pubmed: 31515518
Shiraki, N. et al. Methionine metabolism regulates maintenance and differentiation of human pluripotent stem cells. Cell Metab. 19, 780–794 (2014).
doi: 10.1016/j.cmet.2014.03.017 pubmed: 24746804
Wang, J. et al. Dependence of mouse embryonic stem cells on threonine catabolism. Science 325, 435–439 (2009).
doi: 10.1126/science.1173288 pubmed: 19589965 pmcid: 4373593
Bravo, A. C. et al. Analysis of S-adenosylmethionine and S-adenosylhomocysteine: method optimisation and profiling in healthy adults upon short-term dietary intervention. Metabolites 12, 373 (2022).
doi: 10.3390/metabo12050373 pubmed: 35629877 pmcid: 9143066
Lildballe, D. L., Mutti, E., Birn, H. & Nexo, E. Maximal load of the vitamin B12 transport system: a study on mice treated for four weeks with high-dose vitamin B
doi: 10.1371/journal.pone.0046657 pubmed: 23049711 pmcid: 3462184
Beedholm-Ebsen, R. et al. Identification of multidrug resistance protein 1 (MRP1/ABCC1) as a molecular gate for cellular export of cobalamin. Blood 115, 1632–1639 (2010).
doi: 10.1182/blood-2009-07-232587 pubmed: 19897579
Kokkinakis, D. M. et al. Mitotic arrest, apoptosis, and sensitization to chemotherapy of melanomas by methionine deprivation stress. Mol. Cancer Res. 4, 575–589 (2006).
doi: 10.1158/1541-7786.MCR-05-0240 pubmed: 16908595
Zviran, A. et al. Deterministic somatic cell reprogramming involves continuous transcriptional changes governed by myc and epigenetic-driven modules. Cell Stem Cell 24, 328–341 (2019).
doi: 10.1016/j.stem.2018.11.014 pubmed: 30554962
National Research Council (US) Subcommittee on Laboratory Animal Nutrition. Nutrient Requirements of Laboratory Animals (National Academies Press, 1995). https://doi.org/10.17226/4758
Mentch, S. J. et al. Histone methylation dynamics and gene regulation occur through the sensing of one-carbon metabolism. Cell Metab. 22, 861–873 (2015).
doi: 10.1016/j.cmet.2015.08.024 pubmed: 26411344 pmcid: 4635069
Ye, C., Sutter, B. M., Wang, Y., Kuang, Z. & Tu, B. P. A metabolic function for phospholipid and histone methylation. Mol. Cell 66, 180–193 (2017).
doi: 10.1016/j.molcel.2017.02.026 pubmed: 28366644 pmcid: 5482412
Chronis, C. et al. Cooperative binding of transcription factors orchestrates reprogramming. Cell 168, 442–459 (2017).
doi: 10.1016/j.cell.2016.12.016 pubmed: 28111071 pmcid: 5302508
van den Hurk, M. et al. Transcriptional and epigenetic mechanisms of cellular reprogramming to induced pluripotency. Epigenomics 8, 1131–1149 (2016).
doi: 10.2217/epi-2016-0032 pubmed: 27419933 pmcid: 5514980
Chu, C. H. et al. KDM4B as a target for prostate cancer: structural analysis and selective inhibition by a novel inhibitor. J. Med. Chem. 57, 5975–5985 (2014).
doi: 10.1021/jm500249n pubmed: 24971742 pmcid: 4216216
Edmunds, J. W., Mahadevan, L. C. & Clayton, A. L. Dynamic histone H3 methylation during gene induction: HYPB/Setd2 mediates all H3K36 trimethylation. EMBO J. 27, 406–420 (2008).
doi: 10.1038/sj.emboj.7601967 pubmed: 18157086
Schwarz, B. A. et al. Prospective isolation of poised iPSC intermediates reveals principles of cellular reprogramming. Cell Stem Cell 23, 289–305 (2018).
doi: 10.1016/j.stem.2018.06.013 pubmed: 30017590 pmcid: 6086589
Li, B. et al. Infrequently transcribed long genes depend on the Set2/Rpd3S pathway for accurate transcription. Genes Dev. 21, 1422–1430 (2007).
doi: 10.1101/gad.1539307 pubmed: 17545470 pmcid: 1877753
Neri, F. et al. Intragenic DNA methylation prevents spurious transcription initiation. Nature 543, 72–77 (2017).
doi: 10.1038/nature21373 pubmed: 28225755
Barral, A. et al. SETDB1/NSD-dependent H3K9me3/H3K36me3 dual heterochromatin maintains gene expression profiles by bookmarking poised enhancers. Mol. Cell 82, 816–832 (2022).
doi: 10.1016/j.molcel.2021.12.037 pubmed: 35081363 pmcid: 8860380
McCauley, B. S. et al. Altered chromatin states drive cryptic transcription in aging mammalian stem cells. Nat. Aging 1, 684–697 (2021).
doi: 10.1038/s43587-021-00091-x pubmed: 34746802 pmcid: 8570536
Huang, C. & Zhu, B. Roles of H3K36-specific histone methyltransferases in transcription: antagonizing silencing and safeguarding transcription fidelity. Biophys. Rep. 4, 170–177 (2018).
doi: 10.1007/s41048-018-0063-1 pubmed: 30310854
Pu, M. et al. Trimethylation of Lys36 on H3 restricts gene expression change during aging and impacts life span. Genes Dev. 29, 718–731 (2015).
doi: 10.1101/gad.254144.114 pubmed: 25838541 pmcid: 4387714
Sen, P. et al. H3K36 methylation promotes longevity by enhancing transcriptional fidelity. Genes Dev. 29, 1362–1376 (2015).
doi: 10.1101/gad.263707.115 pubmed: 26159996 pmcid: 4511212
Carrozza, M. J. et al. Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription. Cell 123, 581–592 (2005).
doi: 10.1016/j.cell.2005.10.023 pubmed: 16286007
Ang, Y.-S. et al. Wdr5 mediates self-renewal and reprogramming via the embryonic stem cell core transcriptional network. Cell 145, 183–197 (2011).
doi: 10.1016/j.cell.2011.03.003 pubmed: 21477851 pmcid: 3097468
Iismaa, S. E. et al. Comparative regenerative mechanisms across different mammalian tissues. npj Regen. Med. 3, 6 (2018).
doi: 10.1038/s41536-018-0044-5 pubmed: 29507774 pmcid: 5824955
Ayyaz, A. et al. Single-cell transcriptomes of the regenerating intestine reveal a revival stem cell. Nature https://doi.org/10.1038/s41586-019-1154-y (2019).
doi: 10.1038/s41586-019-1154-y pubmed: 31019301
Nusse, Y. M. et al. Parasitic helminths induce fetal-like reversion in the intestinal stem cell niche. Nature 559, 109–113 (2018).
doi: 10.1038/s41586-018-0257-1 pubmed: 29950724 pmcid: 6042247
Perše, M. & Cerar, A. Dextran sodium sulphate colitis mouse model: traps and tricks. J. Biomed. Biotechnol. 2012, 718617 (2012).
doi: 10.1155/2012/718617 pubmed: 22665990 pmcid: 3361365
Czarnewski, P. et al. Conserved transcriptomic profile between mouse and human colitis allows unsupervised patient stratification. Nat. Commun. 10, 2892 (2019).
doi: 10.1038/s41467-019-10769-x pubmed: 31253778 pmcid: 6598981
Haberman, Y. et al. Ulcerative colitis mucosal transcriptomes reveal mitochondriopathy and personalized mechanisms underlying disease severity and treatment response. Nat. Commun. 10, 38 (2019).
doi: 10.1038/s41467-018-07841-3 pubmed: 30604764 pmcid: 6318335
Mentch, S. J. & Locasale, J. W. One-carbon metabolism and epigenetics: understanding the specificity. Ann. N. Y. Acad. Sci. https://doi.org/10.1111/nyas.12956 (2016).
doi: 10.1111/nyas.12956 pubmed: 26647078
Boon, R. Metabolic fuel for epigenetic: nuclear production meets local consumption. Front. Genet. 12, 768996 (2021).
doi: 10.3389/fgene.2021.768996 pubmed: 34804127 pmcid: 8595138
Ye, C. & Tu, B. P. Sink into the epigenome: histones as repositories that influence cellular metabolism. Trends Endocrinol. Metab. 29, 626–637 (2018).
doi: 10.1016/j.tem.2018.06.002 pubmed: 30001904 pmcid: 6109460
Eram, M. S. et al. Kinetic characterization of human histone H3 lysine 36 methyltransferases, ASH1L and SETD2. Biochim. Biophys. Acta 1850, 1842–1848 (2015).
doi: 10.1016/j.bbagen.2015.05.013 pubmed: 26002201
Lurz, E. et al. Vitamin B
doi: 10.3389/fnut.2020.00083 pubmed: 32582756 pmcid: 7291859
Benight, N. M. et al. B-vitamin deficiency is protective against DSS-induced colitis in mice. Am. J. Physiol. Gastrointest. Liver Physiol. 301, G249–G259 (2011).
doi: 10.1152/ajpgi.00076.2011 pubmed: 21596995 pmcid: 3154603
Tamura, J. et al. Immunomodulation by vitamin B
doi: 10.1046/j.1365-2249.1999.00870.x pubmed: 10209501 pmcid: 1905232
Liu, M. et al. The histone methyltransferase SETD2 modulates oxidative stress to attenuate experimental colitis. Redox Biol. 43, 102004 (2021).
doi: 10.1016/j.redox.2021.102004 pubmed: 34020310 pmcid: 8141928
Ward, M. G. et al. Prevalence and risk factors for functional vitamin B
doi: 10.1097/MIB.0000000000000559 pubmed: 26296064
Zheng, S. et al. Association of ulcerative colitis with transcobalamin II gene polymorphisms and serum homocysteine, vitamin B
doi: 10.1007/s00251-017-0998-2 pubmed: 28526947
Leinenkugel, G. et al. Sca-1 is a marker for cell plasticity in murine pancreatic epithelial cells and induced by IFN-β in vitro. Pancreatology 22, 294–303 (2022).
doi: 10.1016/j.pan.2022.01.006 pubmed: 35120820
Dekel, B. et al. Isolation and characterization of nontubular sca-1+lin- multipotent stem/progenitor cells from adult mouse kidney. J. Am. Soc. Nephrol. 17, 3300–3314 (2006).
doi: 10.1681/ASN.2005020195 pubmed: 17093069
Camarata, T. D., Weaver, G. C., Vasilyev, A. & Arnaout, M. A. Negative regulation of TGFβ signaling by stem cell antigen-1 protects against ischemic acute kidney injury. PLoS ONE 10, e0129561 (2015).
doi: 10.1371/journal.pone.0129561 pubmed: 26053644 pmcid: 4460127
Bender Kim, C. F. et al. Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 121, 823–835 (2005).
doi: 10.1016/j.cell.2005.03.032
Louie, S. M. et al. Progenitor potential of lung epithelial organoid cells in a transplantation model. Cell Rep. 39, 110662 (2022).
doi: 10.1016/j.celrep.2022.110662 pubmed: 35417699 pmcid: 9063850
Zhang, W. et al. Fluorinated N, N-dialkylaminostilbenes repress colon cancer by targeting methionine S-adenosyltransferase 2A. ACS Chem. Biol. 8, 796–803 (2013).
doi: 10.1021/cb3005353 pubmed: 23363077 pmcid: 3631441
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
doi: 10.1093/bioinformatics/bts635 pubmed: 23104886
Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).
doi: 10.1038/nmeth.3869 pubmed: 27214047 pmcid: 4927377
Menzel, P., Ng, K. L. & Krogh, A. Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nat. Commun. 7, 11257 (2016).
doi: 10.1038/ncomms11257 pubmed: 27071849 pmcid: 4833860
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
doi: 10.1186/s13059-014-0550-8 pubmed: 25516281 pmcid: 4302049
Li, D., Liu, C.-M., Luo, R., Sadakane, K. & Lam, T.-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2015).
doi: 10.1093/bioinformatics/btv033 pubmed: 25609793
Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11, 119 (2010).
doi: 10.1186/1471-2105-11-119 pubmed: 20211023 pmcid: 2848648
Huerta-Cepas, J. et al. EggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47, D309–D314 (2019).
doi: 10.1093/nar/gky1085 pubmed: 30418610
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
doi: 10.1038/nmeth.1923 pubmed: 22388286 pmcid: 3322381
Carbon, S. et al. AmiGO: online access to ontology and annotation data. Bioinformatics 25, 288–289 (2009).
doi: 10.1093/bioinformatics/btn615 pubmed: 19033274
Morton, J. T. et al. Establishing microbial composition measurement standards with reference frames. Nat. Commun. 10, 2719 (2019).
doi: 10.1038/s41467-019-10656-5 pubmed: 31222023 pmcid: 6586903
Viltard, M. et al. The metabolomic signature of extreme longevity: naked mole rats versus mice. Aging 11, 4783–4800 (2019).
doi: 10.18632/aging.102116 pubmed: 31346149 pmcid: 6682510
Pang, Z., Chong, J., Li, S. & Xia, J. MetaboAnalystR 3.0: toward an optimized workflow for global metabolomics. Metabolites 10, 186 (2020).
doi: 10.3390/metabo10050186 pubmed: 32392884 pmcid: 7281575
Peng, X. et al. Inhibition of phosphoinositide 3-kinase ameliorates dextran sodium sulfate-induced colitis in mice. J. Pharmacol. Exp. Ther. 332, 46–56 (2010).
doi: 10.1124/jpet.109.153494 pubmed: 19828878
Bankhead, P. et al. QuPath: open source software for digital pathology image analysis. Sci. Rep. 7, 16878 (2017).
doi: 10.1038/s41598-017-17204-5 pubmed: 29203879 pmcid: 5715110
Li, H. et al. The Ink4/Arf locus is a barrier for iPS cell reprogramming. Nature 460, 1136–1139 (2009).
doi: 10.1038/nature08290 pubmed: 19668188 pmcid: 3578184
Subramanian, A. et al. Gene-set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).
doi: 10.1073/pnas.0506580102 pubmed: 16199517 pmcid: 1239896
R Development Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).
Tarasov, A., Vilella, A. J., Cuppen, E., Nijman, I. J. & Prins, P. Sambamba: fast processing of NGS alignment formats. Bioinformatics 31, 2032–2034 (2015).
doi: 10.1093/bioinformatics/btv098 pubmed: 25697820 pmcid: 4765878
Liao, Y., Smyth, G. K. & Shi, W. The R package Rsubread is easier, faster, cheaper and better for alignment and quantification of RNA sequencing reads. Nucleic Acids Res. 47, e47 (2019).
doi: 10.1093/nar/gkz114 pubmed: 30783653 pmcid: 6486549
Ashburner, M. et al. Gene Ontology: tool for the unification of biology. the Gene Ontology Consortium. Nat. Genet. 25, 25–29 (2000).
doi: 10.1038/75556 pubmed: 10802651 pmcid: 3037419
Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).
doi: 10.1186/gb-2009-10-3-r25 pubmed: 19261174 pmcid: 2690996
Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
doi: 10.1093/bioinformatics/btp352 pubmed: 19505943 pmcid: 2723002
Lawrence, M. et al. Software for computing and annotating genomic ranges. PLoS Comput. Biol. 9, e1003118 (2013).
doi: 10.1371/journal.pcbi.1003118 pubmed: 23950696 pmcid: 3738458
Gu, Z., Eils, R., Schlesner, M. & Ishaque, N. EnrichedHeatmap: an R/Bioconductor package for comprehensive visualization of genomic signal associations. BMC Genomics 19, 234 (2018).
doi: 10.1186/s12864-018-4625-x pubmed: 29618320 pmcid: 5885322
Thorvaldsdottir, H., Robinson, J. T. & Mesirov, J. P. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief. Bioinform. 14, 178–192 (2013).
doi: 10.1093/bib/bbs017 pubmed: 22517427
Robinson, J. T. et al. Integrative genomics viewer. Nat. Biotechnol. https://doi.org/10.1038/nbt.1754 (2011).
doi: 10.1038/nbt.1754 pubmed: 21804560 pmcid: 3152676

Auteurs

Marta Kovatcheva (M)

Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain. marta.kovatcheva@irbbarcelona.org.

Elena Melendez (E)

Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.

Dafni Chondronasiou (D)

Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.

Federico Pietrocola (F)

Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.

Raquel Bernad (R)

Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.

Adrià Caballe (A)

Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.

Alexandra Junza (A)

Universitat Rovira i Virgili, Department of Electronic Engineering, IISPV, Tarragona, Spain.
CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain.

Jordi Capellades (J)

Universitat Rovira i Virgili, Department of Electronic Engineering, IISPV, Tarragona, Spain.
Institut d'Investigació Sanitària Pere Virgili (IISPV), Metabolomics Platform, Reus, Spain.

Adrián Holguín-Horcajo (A)

Department of Physiological Science, School of Medicine, Universitat de Barcelona (UB), L'Hospitalet de Llobregat, Spain.
Pancreas Regeneration: Pancreatic Progenitors and Their Niche Group, Regenerative Medicine Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Spain.

Neus Prats (N)

Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.

Sylvere Durand (S)

Metabolomics and Cell Biology Platforms UMS AMMICa/UMR 1138, Institut Gustave Roussy, Villejuif, France.
Equipe labellisée par la Ligue contre le cancer, Centre de Recherche des Cordeliers, Inserm U1138, Université de Paris, Sorbonne Université, Institut Universitaire de France, Paris, France.

Meritxell Rovira (M)

Department of Physiological Science, School of Medicine, Universitat de Barcelona (UB), L'Hospitalet de Llobregat, Spain.
Pancreas Regeneration: Pancreatic Progenitors and Their Niche Group, Regenerative Medicine Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Spain.

Oscar Yanes (O)

Universitat Rovira i Virgili, Department of Electronic Engineering, IISPV, Tarragona, Spain.
CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain.

Camille Stephan-Otto Attolini (C)

Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.

Guido Kroemer (G)

Metabolomics and Cell Biology Platforms UMS AMMICa/UMR 1138, Institut Gustave Roussy, Villejuif, France.
Equipe labellisée par la Ligue contre le cancer, Centre de Recherche des Cordeliers, Inserm U1138, Université de Paris, Sorbonne Université, Institut Universitaire de France, Paris, France.
Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.

Manuel Serrano (M)

Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain. mserrano@altoslabs.com.
Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain. mserrano@altoslabs.com.
Altos Labs, Cambridge Institute of Science, Cambridge, UK. mserrano@altoslabs.com.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH