Multifunctional Block Copolymers, Acting as Recycling Aids, by Atom Transfer Radical Polymerization.
block copolymers
mechanical properties
polymerization
radical reactions
waste prevention
Journal
ChemSusChem
ISSN: 1864-564X
Titre abrégé: ChemSusChem
Pays: Germany
ID NLM: 101319536
Informations de publication
Date de publication:
17 Nov 2023
17 Nov 2023
Historique:
revised:
08
11
2023
received:
21
08
2023
pubmed:
17
11
2023
medline:
17
11
2023
entrez:
17
11
2023
Statut:
aheadofprint
Résumé
Block copolymers utilizing oligomeric poly(pentylene-co-hexylene carbonate)diol modified with 2,4-diisocyanatotoluene and further with 2-bromo-N-(3-hydroxypropyl)-2-methylpropanamide were synthesized and utilized as Activators ReGenerated by Electron Transfer Atom Transfer Radical Polymerization macroinitiators to obtain a first generation of multifunctional recycling additives with poly(glycidyl methacrylate-co-butyl methacrylate-co-methyl methacrylate) side chains, which could act as chain extenders. Then, chosen additive was reacted with a radical scavenger, 3,5-ditertbutyl-4-hydroxybenzoic acid (DHBA), to obtain a second generation of reactive additives. Those copolymers had different numbers of epoxy groups per polymer chain, and different number of epoxides opened with DHBA, hence showed a range of properties, and were utilized as reactive modifiers for polylactide (PLA) extrusion melting. The first-generation modifiers caused an increase in PLA's blends relative melt viscosity, stabilized material properties, and enhanced impact strength, while the second-generation modifiers with more than 8 % of epoxide ring opened showed worse properties. However, they managed to suppress the UV degradation of PLA blend plates.
Identifiants
pubmed: 37975580
doi: 10.1002/cssc.202301232
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e202301232Subventions
Organisme : Warsaw University of Technology
Informations de copyright
© 2023 Wiley-VCH GmbH.
Références
T. Hundertmark, M. Mayer, C. McNally, T. J. Simons, C. Witte, McKinsey & Company 2018, 12, 1-11.
OECD, Global Plastics Outlook: Economic Drivers, Environmental Impacts and Policy Options, OECD Publishing, Paris, 2022, p. 201.
“Bioplastic market data”, can be found under http://www.european-bioplastics.org/market/, 2022 (accessed 13 June 2023).
“EU recycled 41 % of plastic packaging waste in 2019”, can be found under https://ec.europa.eu/eurostat/web/products-eurostat-news/-/ddn-20211027-2, 2021 (accessed 13 June 2023).
“The Commission calls for a climate neutral Europe by 2050*”, can be found under https://ec.europa.eu/commission/presscorner/detail/en/IP_18_65432018 (accessed 23 October 2023).
T. Thiounn, R. C. Smith, J. Polym. Sci. 2020, 58, 1347-1364.
I. A. Ignatyev, W. Thielemans, B. Vander Beke, ChemSusChem 2014, 7, 1579-1593.
J. Badia, A. Ribes-Greus, Eur. Polym. J. 2016, 84, 22-39.
J. Ahmed, S. K. Varshney, Int. J. Food Prop. 2011, 14, 37-58.
T. T. D. Chen, L. P. Carrodeguas, G. S. Sulley, G. L. Gregory, C. K. Williams, Angew. Chem. Int. Ed. 2020, 59, 23450-23455.
M. Shen, W. Huang, M. Chen, B. Song, G. Zeng, Y. Zhang, J. Cleaner Prod. 2020, 254, 120138;
T. Astrup, J. Møller, T. Fruergaard, Waste Manage. Res. 2009, 27, 789-799.
A. Mohanty, M. A. Misra, G. Hinrichsen, Macromol. Mater. Eng. 2000, 276, 1-24;
S. Slomkowski, S. Penczek, A. Duda, Polym. Adv. Technol. 2014, 25, 436-447.
R. Auras, B. Harte, S. Selke, Macromol. Biosci. 2004, 4, 835-864.
M. Sulyman, J. Haponiuk, K. Formela, Int. J. Environ. Sci. Dev. 2016, 7, 100.
EPA, Advancing Sustainable Materials Management: 2018 Fact Sheet, EPA, Washington, 2020, p. 25;
Z. O. Schyns, M. P. Shaver, Macromol. Rapid Commun. 2021, 42, 2000415;
WRAP, Composition of plastic waste travelling through the English and Welsh sorting infrastructure, WRAP, Banbury, 2018, p. 34.
D. Dimonie, R. Socoteanu, S. Pop, I. Fierascu, R. Fierascu, C. Petrea, C. Zaharia, M. Petrache, (Ed. D. S. Achilias), Material Recycling-Trends and Perspectives, IntechOpen, London, 2012, pp. 85-114.
S. Li, J. Biomed. Mater. Res. 1999, 48, 342-353.
L. N. Woodard, M. A. Grunlan, ACS Macro Lett. 2018, 7, 976-982.
C. Li, Q. Liu, W. Gong, Z. Zhou, Z. Yao, X. Meng, Thermochim. Acta 2022, 709, 179144;
S. V. Levchik, E. D. Weil, Polym. Adv. Technol. 2004, 15, 691-700.
F. R. Beltrán, C. Infante, M. U. de la Orden, J. M. Urreaga, J. Cleaner Prod. 2019, 219, 46-56;
F. Iñiguez-Franco, R. Auras, J. Ahmed, S. Selke, M. Rubino, K. Dolan, H. Soto-Valdez, Polym. Test. 2018, 67, 190-196;
A. Jaszkiewicz, A. K. Bledzki, A. Duda, A. Galeski, P. Franciszczak, Macromol. Mater. Eng. 2014, 299, 307-318.
N. S. Allen, M. Edge, J. Vinyl Addit. Technol. 2021, 27, 5-27.
J.-P. Yang, Z.-K. Chen, G. Yang, S.-Y. Fu, L. Ye, Polymer 2008, 49, 3168-3175.
J. H. Jung, M. Ree, H. Kim, Catal. Today 2006, 115, 283-287;
T. Artham, M. Doble, Macromol. Biosci. 2008, 8, 14-24.
Y. Gu, M. Tamura, Y. Nakagawa, K. Nakao, K. Suzuki, K. Tomishige, Green Chem. 2021, 23, 5786-5796.
M. Zawadzki, K. Zawada, S. Kowalczyk, A. Plichta, J. Jaczewski, T. Zabielski, RSC Adv. 2022, 12, 3406-3415;
G. Žagar, P. R. Onck, E. Van Der Giessen, Biophys. J. 2015, 108, 1470-1479.
E. N. Jacobsen, F. Kakiuchi, R. G. Konsler, J. F. Larrow, M. Tokunaga, Tetrahedron Lett. 1997, 38, 773-776;
F. A. Saddique, A. F. Zahoor, S. Faiz, S. A. R. Naqvi, M. Usman, M. Ahmad, Synth. Commun. 2016, 46, 831-868.
R. Xie, A. R. Weisen, Y. Lee, M. A. Aplan, A. M. Fenton, A. E. Masucci, F. Kempe, M. Sommer, C. W. Pester, R. H. Colby, Nat. Commun. 2020, 11, 1-8.
“Glass Transition Temperatures”, can be found under http://polymerdatabase.com/polymer%20physics/Polymer%20Tg.html, (accessed 13 June 2023).
T. Aldhafeeri, M. Alotaibi, C. F. Barry, Polymer 2022, 14, 2790;
R. Mehta, V. Kumar, H. Bhunia, S. Upadhyay, J. Macromol. Sci. Polym. Rev. 2005, 45, 325-349;
V. Speranza, A. De Meo, R. Pantani, Polym. Degrad. Stab. 2014, 100, 37-41;
J. Dreier, C. Brütting, H. Ruckdäschel, V. Altstädt, C. Bonten, Polymer 2021, 13, 2624.
E. Łodyga-Chruścińska, A. Kowalska-Baron, P. Błazińska, M. Pilo, A. Zucca, V. M. Korolevich, V. T. Cheshchevik, Molecules 2019, 24, 3049.
W. Sakai, T. Sadakane, W. Nishimoto, M. Nagata, N. Tsutsumi, Polymer 2002, 43, 6231-6238.
W. Chen, B. Zhang, M. J. Forrestal, Exp. Mech. 1999, 39, 81-85;
W. Chen, F. Lu, B. Zhou, Exp. Mech. 2000, 40, 1-6;
B. Song, W. Chen, J. Eng. Mater. Technol. 2003, 125, 294-301.
H. Kolsky, Appl. Mech. Rev. 1958, 11, 465-468.
K. Philipps, T. Junkers, J. J. Michels, Polym. Chem. 2021, 12, 2522-2531.
G. Cavallo, A. Al Ouahabi, L. Oswald, L. Charles, J.-F. Lutz, J. Am. Chem. Soc. 2016, 138, 9417-9420.
F. R. Mayo, F. M. Lewis, J. Am. Chem. Soc. 1944, 66, 1594-1601;
E. A. Grulke, E. Immergut, J. Brandrup, Polymer handbook, John Wiley & Sons, 1999;
T. Alfrey Jr, C. C. Price, J. Polym. Sci. 1947, 2, 101-106.
G. Odian, Principles of polymerization, John Wiley & Sons, Hoboken, 2004.
A. J. Scott, A. Penlidis, Eur. Polym. J. 2018, 105, 442-450.