Geodynamically corrected Pliocene shoreline elevations in Australia consistent with midrange projections of Antarctic ice loss.


Journal

Science advances
ISSN: 2375-2548
Titre abrégé: Sci Adv
Pays: United States
ID NLM: 101653440

Informations de publication

Date de publication:
15 Nov 2023
Historique:
medline: 17 11 2023
pubmed: 17 11 2023
entrez: 17 11 2023
Statut: ppublish

Résumé

The Mid-Pliocene represents the most recent interval in Earth history with climatic conditions similar to those expected in the coming decades. Mid-Pliocene sea level estimates therefore provide important constraints on projections of future ice sheet behavior and sea level change but differ by tens of meters due to local distortion of paleoshorelines caused by mantle dynamics. We combine an Australian sea level marker compilation with geodynamic simulations and probabilistic inversions to quantify and remove these post-Pliocene vertical motions at continental scale. Dynamic topography accounts for most of the observed sea level marker deflection, and correcting for this effect and glacial isostatic adjustment yields a Mid-Pliocene global mean sea level of +16.0 (+10.4 to +21.5) m (50th/16th to 84th percentiles). Recalibration of recent high-end sea level projections using this revised estimate implies a more stable Antarctic Ice Sheet under future warming scenarios, consistent with midrange forecasts of sea level rise that do not incorporate a marine ice cliff instability.

Identifiants

pubmed: 37976352
doi: 10.1126/sciadv.adg3035
pmc: PMC10656067
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

eadg3035

Références

Philos Trans A Math Phys Eng Sci. 2002 Nov 15;360(1800):2475-91
pubmed: 12460476
Proc Natl Acad Sci U S A. 2021 Aug 17;118(33):
pubmed: 34373328
Nature. 2010 Feb 18;463(7283):930-3
pubmed: 20164926
PeerJ Comput Sci. 2023 Sep 1;9:e1516
pubmed: 37705656
Nat Commun. 2018 Jul 18;9(1):2799
pubmed: 30022077
Nature. 2018 Jun;558(7709):219-222
pubmed: 29899482
Nature. 2016 Mar 31;531(7596):591-7
pubmed: 27029274
Nature. 2007 Dec 6;450(7171):866-9
pubmed: 18064010
Nature. 2014 Apr 24;508(7497):477-82
pubmed: 24739960
Sci Adv. 2020 May 15;6(20):eaaz1346
pubmed: 32440543
Nature. 2009 Mar 19;458(7236):329-32
pubmed: 19295608
Nature. 2021 May;593(7857):83-89
pubmed: 33953408
Sci Adv. 2017 Jul 07;3(7):e1700457
pubmed: 28695210
Nature. 2019 Oct;574(7777):237-241
pubmed: 31578526
Nature. 2020 Jul;583(7817):554-559
pubmed: 32699394
Nat Commun. 2020 Jan 3;11(1):92
pubmed: 31900414
Proc Natl Acad Sci U S A. 2018 Dec 26;115(52):13288-13293
pubmed: 30530685
Philos Trans A Math Phys Eng Sci. 2009 Jan 13;367(1886):157-68
pubmed: 18854304
Nature. 2021 May;593(7857):74-82
pubmed: 33953415
Sci Rep. 2020 Jul 9;10(1):11002
pubmed: 32647351
Nature. 2015 Sep 3;525(7567):95-9
pubmed: 26333468
Nature. 2019 Oct;574(7777):233-236
pubmed: 31471591
Science. 2013 Jun 28;340(6140):1560-3
pubmed: 23686342

Auteurs

Fred D Richards (FD)

Department of Earth Science and Engineering, Imperial College London, London, UK.

Sophie L Coulson (SL)

Fluid Dynamics and Solid Mechanics Group, Los Alamos National Laboratory, Los Alamos, NM, USA.
Department of Earth Sciences, University of New Hampshire, Durham, NH, USA.

Mark J Hoggard (MJ)

Research School of Earth Sciences, Australian National University, Canberra, ACT, Australia.

Jacqueline Austermann (J)

Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA.

Blake Dyer (B)

School of Earth and Ocean Sciences, University of Victoria, Victoria, BC, Canada.

Jerry X Mitrovica (JX)

Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA.

Classifications MeSH