Bifidobacteria in Fermented Dairy Foods: A Health Beneficial Outlook.
Bifidobacteria
Functional dairy foods
Milk fermentation
Prebiotics
Probiotics
Journal
Probiotics and antimicrobial proteins
ISSN: 1867-1314
Titre abrégé: Probiotics Antimicrob Proteins
Pays: United States
ID NLM: 101484100
Informations de publication
Date de publication:
18 Nov 2023
18 Nov 2023
Historique:
accepted:
08
11
2023
medline:
18
11
2023
pubmed:
18
11
2023
entrez:
18
11
2023
Statut:
aheadofprint
Résumé
Bifidobacteria, frequently present in the human gastrointestinal tract, play a crucial role in preserving gut health and are mostly recognized as beneficial probiotic microorganisms. They are associated with fermenting complex carbohydrates, resulting in the production of short-chain fatty acids, bioactive peptides, exopolysaccharides, and vitamins, which provide energy and contribute to gut homeostasis. In light of these findings, research in food processing technologies has harnessed probiotic bacteria such as lactobacilli and bifidobacteria for the formulation of a wide range of fermented dairy products, ensuring their maximum survival and contributing to the development of distinctive quality characteristics and therapeutic benefits. Despite the increased interest in probiotic dairy products, introducing bifidobacteria into the dairy food chain has proved to be complicated. However, survival of Bifidobacterium species is conditioned by strain of bacteria used, metabolic interactions with lactic acid bacteria (LAB), fermentation parameters, and the temperature of storage and preservation of the dairy products. Furthermore, fortification of dairy foods and whey beverages with bifidobacteria have ability to change physicochemical and rheological properties beyond economic value of dairy products. In summary, this review underscores the significance of bifidobacteria as probiotics in diverse fermented dairy foods and accentuates their positive impact on human health. By enhancing our comprehension of the beneficial repercussions associated with the consumption of bifidobacteria-rich products, we aim to encourage individuals to embrace these probiotics as a means of promoting holistic health.
Identifiants
pubmed: 37979040
doi: 10.1007/s12602-023-10189-w
pii: 10.1007/s12602-023-10189-w
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Mank I, Vandormael A, Traore I et al (2020) Dietary habits associated with growth development of children aged < 5 years in the Nouna Health and Demographic Surveillance System. Burkina Faso Nutr J 19:81. https://doi.org/10.1186/s12937-020-00591-3
doi: 10.1186/s12937-020-00591-3
pubmed: 32772913
Linares DM, Gomez C, Renes E et al (2017) Lactic acid bacteria and bifidobacteria with potential to design natural biofunctional health-promoting dairy foods. Front Microbiol 8:846. https://doi.org/10.3389/fmicb.2017.00846
doi: 10.3389/fmicb.2017.00846
pubmed: 28572792
pmcid: 5435742
Chen Y, Michalak M, Agellon LB (2018) Importance of nutrients and nutrient metabolism on human health. Yale J Biol Med 91:95–103
pubmed: 29955217
pmcid: 6020734
Macori G, Cotter PD (2018) Novel insights into the microbiology of fermented dairy foods. Curr Opin Biotechnol 49:172–178. https://doi.org/10.1016/j.copbio.2017.09.002
doi: 10.1016/j.copbio.2017.09.002
pubmed: 28964915
Rawat K, Kumari A, Kumar S et al (2018) Traditional fermented products of India. Int J Curr Microbiol App Sci 7:1873–1883. https://doi.org/10.20546/ijcmas.2018.704.214
Rezac S, Kok CR, Heermann M et al (2018) Fermented foods as a dietary source of live organisms. Front Microbiol 9:1785. https://doi.org/10.3389/fmicb.2018.01785
doi: 10.3389/fmicb.2018.01785
pubmed: 30197628
pmcid: 6117398
Skowron K, Budzynska A, Grudlewska-Buda K et al (2022) Two faces of fermented foods-the benefits and threats of its consumption. Front Microbiol 13:845166. https://doi.org/10.3389/fmicb.2022.845166
doi: 10.3389/fmicb.2022.845166
pubmed: 35330774
pmcid: 8940296
Marco ML, Heeney D, Binda S et al (2017) Health benefits of fermented foods: microbiota and beyond. Curr Opin Biotechnol 44:94–102. https://doi.org/10.1016/j.copbio.2016.11.010
doi: 10.1016/j.copbio.2016.11.010
pubmed: 27998788
Parker M, Zobrist S, Donahue C et al (2018) Naturally fermented milk from northern Senegal: bacterial community composition and probiotic enrichment with Lactobacillus rhamnosus. Front Microbiol 9:2218. https://doi.org/10.3389/fmicb.2018.02218
doi: 10.3389/fmicb.2018.02218
pubmed: 30298060
pmcid: 6160551
Chen M, Ye X, Shen D et al (2019) Modulatory effects of gut microbiota on constipation: the commercial beverage Yakult shapes stool consistency. J Neurogastroenterol Motil 25:475–477. https://doi.org/10.5056/jnm19048
doi: 10.5056/jnm19048
pubmed: 31327224
pmcid: 6657925
Danielewicz A, Morze J, Staniewska K et al (2022) Association between intake of fermented dairy product and diet quality, health beliefs in a representative sample of Polish population. Nutrients. https://doi.org/10.3390/nu14235018
doi: 10.3390/nu14235018
pubmed: 36501048
pmcid: 9736614
Chugh B, Kamal-Eldin A (2020) Bioactive compounds produced by probiotics in food products. Curr Opin Food Sci 32:76–82. https://doi.org/10.1016/j.cofs.2020.02.003
doi: 10.1016/j.cofs.2020.02.003
Giraffa G (2012) Selection and design of lactic acid bacteria probiotic cultures. Eng Life Sci 12:391–398. https://doi.org/10.1002/elsc.201100118
doi: 10.1002/elsc.201100118
García-Burgos M, Moreno-Fernández J, Alférez MJM et al (2020) New perspectives in fermented dairy products and their health relevance. J Funct Foods 72:104059. https://doi.org/10.1016/j.jff.2020.104059
doi: 10.1016/j.jff.2020.104059
Dimidi E, Cox SR, Rossi M et al (2019) Fermented foods: definitions and characteristics, impact on the gut microbiota and fffects on gastrointestinal health and disease. Nutrients. https://doi.org/10.3390/nu11081806
doi: 10.3390/nu11081806
pubmed: 31387262
pmcid: 6723656
Chen P (2021) Lactic acid bacteria in fermented food. Advances in probiotics: microorganisms in food and health, p 397–416
FAO/WHO (2002) Guidelines for the evaluation of probiotics in food. Paris: FAO; 2002. 1–11 p
Hill C, Guarner F, Reid G et al (2014) Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 11:506–514. https://doi.org/10.1038/nrgastro.2014.66
doi: 10.1038/nrgastro.2014.66
pubmed: 24912386
Jena R, Choudhury PK, Puniya AK et al (2017) Isolation and species delineation of genus Bifidobacterium using PCR-RFLP of partial hsp60 gene fragment. LWT 80:286–293. https://doi.org/10.1016/j.lwt.2017.02.032
doi: 10.1016/j.lwt.2017.02.032
Yeşilyurt N, Yılmaz B, Ağagündüz D et al (2021) Involvement of probiotics and postbiotics in the immune system modulation. Biologics 1:89–110. https://doi.org/10.3390/biologics1020006
doi: 10.3390/biologics1020006
Das TK, Pradhan S, Chakrabarti S et al (2022) Current status of probiotic and related health benefits. Appl Food Res 2:100185. https://doi.org/10.1016/j.afres.2022.100185
doi: 10.1016/j.afres.2022.100185
Lee A, Lee YJ, Yoo HJ et al (2017) Consumption of dairy yogurt containing Lactobacillus paracasei ssp. paracasei, Bifidobacterium animalis ssp. lactis and heat-treated Lactobacillus plantarum improves immune function including natural killer cell activity. Nutrients. https://doi.org/10.3390/nu9060558
doi: 10.3390/nu9060558
pubmed: 29295591
pmcid: 5793248
Shori AB (2021) Application of Bifidobacterium spp in beverages and dairy food products: an overview of survival during refrigerated storage. Food Sci Technol Campinas 42:41520. https://doi.org/10.1590/fst.41520
doi: 10.1590/fst.41520
Jena R, Choudhury PK, Puniya AK et al (2022) Applicability of rpoB gene for PCR-RFLP based discrimination of bifidobacterial species isolated from human and animal sources. J Pure Appl Microbiol. https://doi.org/10.22207/JPAM.16.1.48
Ershidat OMT, Mazahreh AS (2009) Probiotics bacteria in fermented dairy products. Pak J Nutr 8:1107–1113
doi: 10.3923/pjn.2009.1107.1113
Prasanna PHP, Grandison AS, Charalampopoulos D (2014) Bifidobacteria in milk products: an overview of physiological and biochemical properties, exopolysaccharide production, selection criteria of milk products and health benefits. Food Res Int 55:247–262. https://doi.org/10.1016/j.foodres.2013.11.013
doi: 10.1016/j.foodres.2013.11.013
Ventura M, Turroni F, van Sinderen D (2012) Probiogenomics as a tool to obtain genetic insights into adaptation of probiotic bacteria to the human gut. Bioeng Bugs 3:73–79. https://doi.org/10.4161/bbug.18540
doi: 10.4161/bbug.18540
pubmed: 22095053
pmcid: 3357336
Jaglan N, Kumar S, Choudhury PK et al (2019) Isolation, characterization and conjugated linoleic acid production potential of bifidobacterial isolates from ruminal fluid samples of Murrah buffaloes. Anaerobe 56:40–45. https://doi.org/10.1016/j.anaerobe.2019.02.001
doi: 10.1016/j.anaerobe.2019.02.001
pubmed: 30738138
Jena R, Choudhury PK, Puniya AK et al (2021) Efficacy of BOX-PCR fingerprinting for taxonomic discrimination of bifidobacterial species isolated from diverse sources. 3 Biotech 11:270. https://doi.org/10.1007/s13205-021-02765-0
doi: 10.1007/s13205-021-02765-0
pubmed: 34055563
pmcid: 8126583
Wei H, Chen L, Lian G et al (2018) Antitumor mechanisms of bifidobacteria. Oncol Lett 16:3–8. https://doi.org/10.3892/ol.2018.8692
doi: 10.3892/ol.2018.8692
pubmed: 29963126
pmcid: 6019968
O’Mahony L, McCarthy J, Kelly P et al (2005) Lactobacillus and Bifidobacterium in irritable bowel syndrome: symptom responses and relationship to cytokine profiles. Gastroenterology 128:541–551. https://doi.org/10.1053/j.gastro.2004.11.050
doi: 10.1053/j.gastro.2004.11.050
pubmed: 15765388
Waitzberg DL, Quilici FA, Michzputen S (2015) The effect of probiotic fermented milk that includes Bifidobacterium lactis CNCMI-2494 on the reduction of gastrointestinal discomfort and symptoms in adults: a narrative review. Nutr Hosp 32:501–509. https://doi.org/10.3305/nh.2015.32.2.9232
doi: 10.3305/nh.2015.32.2.9232
pubmed: 26268077
Solopova A, Bottacini F, Venturi Degli Esposti E et al (2020) Riboflavin biosynthesis and overproduction by a derivative of the human gut commensal Bifidobacterium longum subsp. infantis ATCC 15697. Front Microbiol 11:573335. https://doi.org/10.3389/fmicb.2020.573335
doi: 10.3389/fmicb.2020.573335
pubmed: 33042083
pmcid: 7522473
Jaglan N, Kumar S, Choudhury PK et al (2020) Effect of supplementing conjugated linoleic acid producing bifidobacterial strains on in vitro rumen fermentation attributes. Indian J Anim Nutr 37:132–137. https://doi.org/10.5958/2231-6744.2020.00022.5
doi: 10.5958/2231-6744.2020.00022.5
Arboleya S, Watkins C, Stanton C et al (2016) Gut bifidobacteria populations in human health and aging. Front Microbiol 7:1204. https://doi.org/10.3389/fmicb.2016.01204
doi: 10.3389/fmicb.2016.01204
pubmed: 27594848
pmcid: 4990546
Underwood MA (2022) Bifidobacterium infantis, necrotizing enterocolitis, death, and the role of parents in the neonatal intensive care unit. J Pediatr 244:14–16. https://doi.org/10.1016/j.jpeds.2022.02.011
doi: 10.1016/j.jpeds.2022.02.011
pubmed: 35151680
Bozkurt HS, Quigley EM (2020) The probiotic Bifidobacterium in the management of coronavirus: a theoretical basis. Int J Immunopathol Pharmacol 34:2058738420961304. https://doi.org/10.1177/2058738420961304
doi: 10.1177/2058738420961304
pubmed: 33103512
pmcid: 7786419
Tripathi MK, Giri SK (2014) Probiotic functional foods: survival of probiotics during processing and storage. J Funct Foods 9:225–241. https://doi.org/10.1016/j.jff.2014.04.030
doi: 10.1016/j.jff.2014.04.030
Davani-Davari D, Negahdaripour M, Karimzadeh I et al (2019) Prebiotics: definition, types, sources, mechanisms, and clinical applications. Foods. https://doi.org/10.3390/foods8030092
doi: 10.3390/foods8030092
pubmed: 30857316
pmcid: 6463098
Matejčeková Z, Vlková E, Liptáková D et al (2019) Preliminary screening of growth and viability of 10 strains of Bifidobacterium spp.: effect of media composition. Fermentation. https://doi.org/10.3390/fermentation5020038
doi: 10.3390/fermentation5020038
Pokusaeva K, Fitzgerald GF, van Sinderen D (2011) Carbohydrate metabolism in bifidobacteria. Genes Nutr 6:285–306. https://doi.org/10.1007/s12263-010-0206-6
doi: 10.1007/s12263-010-0206-6
pubmed: 21484167
pmcid: 3145055
Garrido D, Ruiz-Moyano S, Jimenez-Espinoza R et al (2013) Utilization of galactooligosaccharides by Bifidobacterium longum subsp. infantis isolates. Food Microbiol 33:262–270. https://doi.org/10.1016/j.fm.2012.10.003
doi: 10.1016/j.fm.2012.10.003
pubmed: 23200660
De Vuyst L, Moens F, Selak M et al (2014) Summer meeting 2013: growth and physiology of bifidobacteria. J Appl Microbiol 116:477–491. https://doi.org/10.1111/jam.12415
doi: 10.1111/jam.12415
pubmed: 24314205
Koh A, De Vadder F, Kovatcheva-Datchary P et al (2016) From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 165:1332–1345. https://doi.org/10.1016/j.cell.2016.05.041
doi: 10.1016/j.cell.2016.05.041
pubmed: 27259147
Gonzalez-Vazquez R, Zuniga-Leon E, Torres-Maravilla E et al (2022) Genomic and biochemical characterization of Bifidobacterium pseudocatenulatum JCLA3 isolated from human intestine. Microorganisms. https://doi.org/10.3390/microorganisms10112100
doi: 10.3390/microorganisms10112100
pubmed: 36363691
pmcid: 9695335
Willemsen LE, Koetsier MA, van Deventer SJ et al (2003) Short chain fatty acids stimulate epithelial mucin 2 expression through differential effects on prostaglandin E(1) and E(2) production by intestinal myofibroblasts. Gut 52:1442–1447. https://doi.org/10.1136/gut.52.10.1442
doi: 10.1136/gut.52.10.1442
pubmed: 12970137
pmcid: 1773837
Galland L (2014) The gut microbiome and the brain. J Med Food 17:1261–1272. https://doi.org/10.1089/jmf.2014.7000
doi: 10.1089/jmf.2014.7000
pubmed: 25402818
pmcid: 4259177
Altaib H, Kozakai T, Badr Y et al (2022) Cell factory for gamma-aminobutyric acid (GABA) production using Bifidobacterium adolescentis. Microb Cell Fact 21:33. https://doi.org/10.1186/s12934-021-01729-6
doi: 10.1186/s12934-021-01729-6
pubmed: 35255900
pmcid: 8903651
Patel A, Nihir Shah JBP (2013) Biosynthesis of vitamins and enzymes in fermented foods by lactic acid bacteria and related genera - a promising approach. Croat J Food Sci Technol 5:85–91
Rossi M, Amaretti A, Raimondi S (2011) Folate production by probiotic bacteria. Nutrients 3:118–134. https://doi.org/10.3390/nu3010118
doi: 10.3390/nu3010118
pubmed: 22254078
pmcid: 3257725
Crittenden RG, Martinez NR, Playne MJ (2003) Synthesis and utilisation of folate by yoghurt starter cultures and probiotic bacteria. Int J Food Microbiol 80:217–222. https://doi.org/10.1016/s0168-1605(02)00170-8
doi: 10.1016/s0168-1605(02)00170-8
pubmed: 12423923
Florence A, Silva R, Santo A et al (2009) Increased CLA content in organic milk fermented by Bifidobacteria or yoghurt cultures. Dairy Sci Technol 89:541–553. https://doi.org/10.1051/dst/2009030
doi: 10.1051/dst/2009030
Van Nieuwenhove CP, Oliszewski R, Gonzalez SN et al (2007) Conjugated linoleic acid conversion by dairy bacteria cultured in MRS broth and buffalo milk. Lett Appl Microbiol 44:467–474. https://doi.org/10.1111/j.1472-765X.2007.02135.x
doi: 10.1111/j.1472-765X.2007.02135.x
pubmed: 17451511
Ruiz L, Delgado S, Ruas-Madiedo P et al (2017) Bifidobacteria and their molecular communication with the immune system. Front Microbiol 8:2345. https://doi.org/10.3389/fmicb.2017.02345
doi: 10.3389/fmicb.2017.02345
pubmed: 29255450
pmcid: 5722804
Abdel-Salam AM, Al-Dekheil A, Babkr A et al (2010) High fiber probiotic fermented mare’s milk reduces the toxic effects of mercury in rats. N Am J Med Sci 2:569–575. https://doi.org/10.4297/najms.2010.2569
doi: 10.4297/najms.2010.2569
pubmed: 22558569
pmcid: 3338224
Dertli E, Toker OS, Durak MZ et al (2016) Development of a fermented ice-cream as influenced by in situ exopolysaccharide production: rheological, molecular, microstructural and sensory characterization. Carbohydr Polym 136:427–440. https://doi.org/10.1016/j.carbpol.2015.08.047
doi: 10.1016/j.carbpol.2015.08.047
pubmed: 26572373
Prasanna PHP, Grandison AS, Charalampopoulosa D (2013) Microbiological, chemical and rheological properties of low fat set yoghurt produced with exopolysaccharide (EPS) producing Bifidobacterium strains. Food Res Int 5:15–22. https://doi.org/10.1016/j.foodres.2012.11.016
doi: 10.1016/j.foodres.2012.11.016
Ahmad CNC, Haiqin CJZ, Jian T et al (2010) Bifidin I – a new bacteriocin produced by Bifidobacterium infantis BCRC 14602: purification and partial amino acid sequence. Food Control 21:746–753. https://doi.org/10.1016/j.foodcont.2009.11.003
doi: 10.1016/j.foodcont.2009.11.003
Anjana TSK (2022) Bacteriocin-producing probiotic lactic acid bacteria in controlling dysbiosis of the gut microbiota. Front Cell Infect Microbiol 12:851140. https://doi.org/10.3389/fcimb.2022.851140
doi: 10.3389/fcimb.2022.851140
pubmed: 35651753
pmcid: 9149203
Liu G, Ren L, Song Z et al (2015) Purification and characteristics of bifidocin A, a novel bacteriocin produced by Bifidobacterium animals BB04 from centenarians’ intestine. Food Control 50:889–895. https://doi.org/10.1016/j.foodcont.2014.10.049
doi: 10.1016/j.foodcont.2014.10.049
Du M, Xie X, Yang S et al (2021) Lysozyme-like protein produced by Bifidobacterium longum regulates human gut microbiota using in vitro models. Molecules. https://doi.org/10.3390/molecules26216480
doi: 10.3390/molecules26216480
pubmed: 35011486
pmcid: 8746348
Flint HJ, Duncan SH, Scott KP et al (2015) Links between diet, gut microbiota composition and gut metabolism. Proc Nutr Soc 74:13–22. https://doi.org/10.1017/S0029665114001463
doi: 10.1017/S0029665114001463
pubmed: 25268552
Chang YH, Jeong CH, Cheng WN et al (2021) Quality characteristics of yogurts fermented with short-chain fatty acid-producing probiotics and their effects on mucin production and probiotic adhesion onto human colon epithelial cells. J Dairy Sci 104:7415–7425. https://doi.org/10.3168/jds.2020-19820
doi: 10.3168/jds.2020-19820
pubmed: 33814147
Kang CH, Kim JS, Park HM et al (2021) Antioxidant activity and short-chain fatty acid production of lactic acid bacteria isolated from Korean individuals and fermented foods. 3 Biotech 11:217. https://doi.org/10.1007/s13205-021-02767-y
doi: 10.1007/s13205-021-02767-y
pubmed: 33936926
pmcid: 8050147
LeBlanc JG, Chain F, Martin R et al (2017) Beneficial effects on host energy metabolism of short-chain fatty acids and vitamins produced by commensal and probiotic bacteria. Microb Cell Fact 16:79. https://doi.org/10.1186/s12934-017-0691-z
doi: 10.1186/s12934-017-0691-z
pubmed: 28482838
pmcid: 5423028
Usta-Gorgun B, Yilmaz-Ersan L (2020) Short-chain fatty acids production by Bifidobacterium species in the presence of salep. Electron J Biotechnol 47:29–35. https://doi.org/10.1016/j.ejbt.2020.06.004
doi: 10.1016/j.ejbt.2020.06.004
Li S, Chen T, Xu F et al (2014) The beneficial effect of exopolysaccharides from Bifidobacterium bifidum WBIN03 on microbial diversity in mouse intestine. J Sci Food Agric 94:256–264. https://doi.org/10.1002/jsfa.6244
doi: 10.1002/jsfa.6244
pubmed: 23716082
Schiavi E, Gleinser M, Molloy E et al (2016) The surface-associated exopolysaccharide of Bifidobacterium longum 35624 plays an essential role in dampening host proinflammatory responses and repressing local TH17 responses. Appl Environ Microbiol 82:7185–7196. https://doi.org/10.1128/AEM.02238-16
doi: 10.1128/AEM.02238-16
pubmed: 27736791
pmcid: 5118929
Fanning S, Hall LJ, Cronin M et al (2012) Bifidobacterial surface-exopolysaccharide facilitates commensal-host interaction through immune modulation and pathogen protection. Proc Natl Acad Sci USA 109:2108–2113. https://doi.org/10.1073/pnas.1115621109
doi: 10.1073/pnas.1115621109
pubmed: 22308390
pmcid: 3277520
Wu MH, Pan TM, Wu YJ et al (2010) Exopolysaccharide activities from probiotic Bifidobacterium: immunomodulatory effects (on J774A.1 macrophages) and antimicrobial properties. Int J Food Microbiol 144:104–110. https://doi.org/10.1016/j.ijfoodmicro.2010.09.003
doi: 10.1016/j.ijfoodmicro.2010.09.003
pubmed: 20884069
Yuan L, Chu B, Chen S et al (2021) Exopolysaccharides from Bifidobacterium animalis ameliorate Escherichia coli-induced IPEC-J2 cell damage via inhibiting apoptosis and restoring autophagy. Microorganisms. https://doi.org/10.3390/microorganisms9112363
doi: 10.3390/microorganisms9112363
pubmed: 35056486
pmcid: 8779501
Salazar N, Neyrinck AM, Bindels LB et al (2019) Functional effects of EPS-producing Bifidobacterium administration on energy metabolic alterations of diet-induced obese mice. Front Microbiol 10:1809. https://doi.org/10.3389/fmicb.2019.01809
doi: 10.3389/fmicb.2019.01809
pubmed: 31440225
pmcid: 6693475
Yildirim Z, Johnson MG (1998) Characterization and antimicrobial spectrum of bifidocin B, a bacteriocin produced by Bifidobacterium bifidum NCFB 1454. J Food Prot 61:47–51. https://doi.org/10.4315/0362-028x-61.1.47
doi: 10.4315/0362-028x-61.1.47
pubmed: 9708252
Martinez FA, Balciunas EM, Converti A et al (2013) Bacteriocin production by Bifidobacterium spp. A review. Biotechnol Adv 31:482–488. https://doi.org/10.1016/j.biotechadv.2013.01.010
doi: 10.1016/j.biotechadv.2013.01.010
pubmed: 23384878
Mahdi L, Auda IG, Ali IM et al (2018) Antibacterial activity of a novel characterized and purified bacteriocin extracted from Bifidobacterium adolescentis. Rev Med Microbiol 29:73–80. https://doi.org/10.1097/MRM.0000000000000128
doi: 10.1097/MRM.0000000000000128
Darvishi N, Fard NA, Sadrnia M (2021) Genomic and proteomic comparisons of bacteriocins in probiotic species Lactobacillus and Bifidobacterium and inhibitory ability of Escherichia coli MG 1655. Biotechnol Rep (Amst) 31:e00654. https://doi.org/10.1016/j.btre.2021.e00654
doi: 10.1016/j.btre.2021.e00654
pubmed: 34258243
Javvadi SG, Kujawska M, Papp D et al (2022) A novel bacteriocin produced by Bifidobacterium longum subsp. infantis has dual antimicrobial and immunomodulatory activity. bioRxiv. https://doi.org/10.1101/2022.01.27.477972
doi: 10.1101/2022.01.27.477972
Nicholson JK, Holmes E, Kinross J et al (2012) Host-gut microbiota metabolic interactions. Science 336:1262–1267. https://doi.org/10.1126/science.1223813
doi: 10.1126/science.1223813
pubmed: 22674330
Pokusaeva K, Johnson C, Luk B et al (2017) GABA-producing Bifidobacterium dentium modulates visceral sensitivity in the intestine. Neurogastroenterol Motil. https://doi.org/10.1111/nmo.12904
doi: 10.1111/nmo.12904
pubmed: 27458085
Sahab NRM, Subroto E, Balia RL et al (2020) Gamma-aminobutyric acid found in fermented foods and beverages: current trends. Heliyon 6:e05526. https://doi.org/10.1016/j.heliyon.2020.e05526
doi: 10.1016/j.heliyon.2020.e05526
pubmed: 33251370
pmcid: 7680766
Kim J, Park M, Kang SA et al (2014) Production of γ-aminobutyric acid during fermentation of Gastrodia elata Bl. by co-culture of Lactobacillus brevis GABA 100 with Bifidobacterium bifidum BGN4. Food Sci Biotechnol 23:459–466. https://doi.org/10.1007/s10068-014-0063-y
doi: 10.1007/s10068-014-0063-y
Raimondi S, Amaretti A, Leonardi A et al (2016) Conjugated linoleic acid production by bifidobacteria: screening, kinetic, and composition. Biomed Res Int 2016:8654317. https://doi.org/10.1155/2016/8654317
doi: 10.1155/2016/8654317
pubmed: 27429985
pmcid: 4939342
Coakley M, Ross RP, Nordgren M et al (2003) Conjugated linoleic acid biosynthesis by human-derived Bifidobacterium species. J Appl Microbiol 94:138–145. https://doi.org/10.1046/j.1365-2672.2003.01814.x
doi: 10.1046/j.1365-2672.2003.01814.x
Fontes AL, Pimentel L, Rodriguez-Alcala LM et al (2018) Effect of PUFA substrates on fatty acid profile of Bifidobacterium breve Ncimb 702258 and CLA/CLNA production in commercial semi-skimmed milk. Sci Rep 8:15591. https://doi.org/10.1038/s41598-018-33970-2
doi: 10.1038/s41598-018-33970-2
pubmed: 30349012
pmcid: 6197199
Terán V, Pizarro PL, Zacarías MF et al (2015) Production of conjugated dienoic and trienoic fatty acids by lactic acid bacteria and bifidobacteria. J Func Foods 19:417–425. https://doi.org/10.1016/j.jff.2015.09.046
doi: 10.1016/j.jff.2015.09.046
AnaPaula ES, Silva RC, Soares FASM et al (2010) Açai pulp addition improves fatty acid profile and probiotic viability in yoghurt. Int Dairy J 20:415–422. https://doi.org/10.1016/j.idairyj.2010.01.002
doi: 10.1016/j.idairyj.2010.01.002
D’Aimmo MR, Mattarelli P, Biavati B et al (2012) The potential of bifidobacteria as a source of natural folate. J Appl Microbiol 112:975–984. https://doi.org/10.1111/j.1365-2672.2012.05261.x
doi: 10.1111/j.1365-2672.2012.05261.x
pubmed: 22335359
Noda H, Akasaka N, Ohsugi M (1994) Biotin production by bifidobacteria. J Nutr Sci Vitaminol (Tokyo) 40:181–188. https://doi.org/10.3177/jnsv.40.181
doi: 10.3177/jnsv.40.181
pubmed: 7931726
Ayivi RD, Gyawali R, Krastanov A et al (2020) Lactic acid bacteria: food safety and human health applications. Dairy 1:202–232. https://doi.org/10.3390/dairy1030015
doi: 10.3390/dairy1030015
Janer C, Arigoni F, Lee BH et al (2005) Enzymatic ability of Bifidobacterium animalis subsp. lactis to hydrolyze milk proteins: identification and characterization of endopeptidase O. Appl Environ Microbiol 71:8460–8465. https://doi.org/10.1128/AEM.71.12.8460-8465.2005
doi: 10.1128/AEM.71.12.8460-8465.2005
pubmed: 16332835
pmcid: 1317388
Cui S, Gu Z, Wang W et al (2022) Characterization of peptides available to different bifidobacteria. LWT 169:113958. https://doi.org/10.1016/j.lwt.2022.113958
doi: 10.1016/j.lwt.2022.113958
Serafini F, Turroni F, Ruas-Madiedo P et al (2014) Kefir fermented milk and kefiran promote growth of Bifidobacterium bifidum PRL2010 and modulate its gene expression. Int J Food Microbiol 178:50–59. https://doi.org/10.1016/j.ijfoodmicro.2014.02.024
doi: 10.1016/j.ijfoodmicro.2014.02.024
pubmed: 24667318
Hansen LT, Allan-Wojtas PM, Jin Y-L et al (2002) Survival of Ca-alginate microencapsulated Bifidobacterium spp. in milk and simulated gastrointestinal conditions. Food Microbiol 19:35–45. https://doi.org/10.1006/fmic.2001.0452
doi: 10.1006/fmic.2001.0452
Ruiz L, Margolles A, Sanchez B (2013) Bile resistance mechanisms in Lactobacillus and Bifidobacterium. Front Microbiol 4:396. https://doi.org/10.3389/fmicb.2013.00396
doi: 10.3389/fmicb.2013.00396
pubmed: 24399996
pmcid: 3872040
Shah NP (2000) Probiotic bacteria: selective enumeration and survival in dairy foods. J Dairy Sci 83:894–907. https://doi.org/10.3168/jds.S0022-0302(00)74953-8
doi: 10.3168/jds.S0022-0302(00)74953-8
pubmed: 10791807
Boylston TD, Vinderola CG, Ghoddusi HB et al (2004) Incorporation of bifidobacteria into cheeses: challenges and rewards. Int Dairy J 14:375–387. https://doi.org/10.1016/j.idairyj.2003.08.008
doi: 10.1016/j.idairyj.2003.08.008
Ziarno M, Zareba D (2015) Effects of milk components and food additives on survival of three bifidobacteria strains in fermented milk under simulated gastrointestinal tract conditions. Microb Ecol Health Dis 26:27812. https://doi.org/10.3402/mehd.v26.27812
doi: 10.3402/mehd.v26.27812
pubmed: 26546945
Dantas A, Verruck S, Canella MHM et al (2021) Encapsulated Bifidobacterium BB-12 addition in a concentrated lactose-free yogurt: its survival during storage and effects on the product’s properties. Food Res Int 150:110742. https://doi.org/10.1016/j.foodres.2021.110742
doi: 10.1016/j.foodres.2021.110742
pubmed: 34865761
Bogsan CSB, Ferreira L, Maldonado C et al (2014) Fermented or unfermented milk using Bifidobacterium animalis subsp. lactis HN019: technological approach determines the probiotic modulation of mucosal cellular immunity. Food Res Int 64:283–288. https://doi.org/10.1016/j.foodres.2014.05.036
doi: 10.1016/j.foodres.2014.05.036
pubmed: 30011652
Stavropoulou E, Bezirtzoglou E (2020) Probiotics in medicine: a long debate. Front Immunol 11:2192. https://doi.org/10.3389/fimmu.2020.02192
doi: 10.3389/fimmu.2020.02192
pubmed: 33072084
pmcid: 7544950
Milani C, Turroni F, Duranti S et al (2016) Genomics of the genus Bifidobacterium reveals species-specific adaptation to the glycan-rich gut environment. Appl Environ Microbiol 82:980–991. https://doi.org/10.1128/AEM.03500-15
doi: 10.1128/AEM.03500-15
pubmed: 26590291
pmcid: 4751850
Tojo R, Suarez A, Clemente MG et al (2014) Intestinal microbiota in health and disease: role of bifidobacteria in gut homeostasis. World J Gastroenterol 20:15163–15176. https://doi.org/10.3748/wjg.v20.i41.15163
doi: 10.3748/wjg.v20.i41.15163
pubmed: 25386066
pmcid: 4223251
Yurliasni Y, Hanum Z, Delima M et al (2022) Initial characterization of bifidus milk quality with different starter levels of Bifidobacterium longum. IOP Conf Ser Earth Environ Sci 1116:012060. https://doi.org/10.1088/1755-1315%2F1116%2F1%2F012060
doi: 10.1088/1755-1315%2F1116%2F1%2F012060
Elshaghabee FMF, Abd El-Maksoud AA, Alharbi SA et al (2021) Fortification of acidophilus-bifidus-thermophilus (ABT) Fermented milk with heat-treated industrial yeast enhances its selected properties. Molecules. https://doi.org/10.3390/molecules26133876
doi: 10.3390/molecules26133876
pubmed: 34201949
pmcid: 8271856
Antunes AEC, Silva ÉRA, Dender VAN et al (2009) Probiotic buttermilk-like fermented milk product development in a semi-industrial scale: physicochemical, microbiological and sensory acceptability. Int J Dairy Technol 62:556–563. https://doi.org/10.1111/j.1471-0307.2009.00534.x
doi: 10.1111/j.1471-0307.2009.00534.x
Oliveira RPS, Perego P, De Oliveira MN et al (2011) Effect of inulin as a prebiotic to improve growth and counts of a probiotic cocktail in fermented skim milk. LWT 44:520–523. https://doi.org/10.1016/j.lwt.2010.08.024
doi: 10.1016/j.lwt.2010.08.024
Oliveira RPDS, Florence ACR, Perego P et al (2011) Use of lactulose as prebiotic and its influence on the growth, acidification profile and viable counts of different probiotics in fermented skim milk. Int J Food Microbiol 145:22–27. https://doi.org/10.1016/j.ijfoodmicro.2010.11.011
doi: 10.1016/j.ijfoodmicro.2010.11.011
pubmed: 21144608
Lourens HA, Viljoen BC (2001) Yogurt as probiotic carrier food. Int Dairy J 11:1–17. https://doi.org/10.1016/S0958-6946(01)00036-X
doi: 10.1016/S0958-6946(01)00036-X
Faraki A, Noori N, Gandomi H et al (2020) Effect of Auricularia auricula aqueous extract on survival of Lactobacillus acidophilus La-5 and Bifidobacterium bifidum Bb-12 and on sensorial and functional properties of synbiotic yogurt. Food Sci Nutr 8:1254–1263. https://doi.org/10.1002/fsn3.1414
doi: 10.1002/fsn3.1414
pubmed: 32148831
pmcid: 7020330
Ribeiro APO, Gomes FS, Olbrich M, dos Santos K et al (2020) Development of a probiotic nonfermented blend beverage with juçara fruit: effect of the matrix on probiotic viability and survival to the gastrointestinal tract. LWT 118:108756. https://doi.org/10.1016/j.lwt.2019.108756
doi: 10.1016/j.lwt.2019.108756
Prasanna PHP, Charalampopoulos D (2019) Encapsulation in an alginate–goats’ milk–inulin matrix improves survival of probiotic Bifidobacterium in simulated gastrointestinal conditions and goats’ milk yoghurt. Int J Dairy Technol 72:132–141. https://doi.org/10.1111/1471-0307.12568
doi: 10.1111/1471-0307.12568
Shori AB, Baba AS (2015) Survival of Bifidobacterium bifidum in cow- and camel-milk yogurts fortified with Cinnamomum verum and Allium sativum. J Assoc Arab Univ Basic Appl Sci 18:7–11. https://doi.org/10.1016/j.jaubas.2014.02.006
doi: 10.1016/j.jaubas.2014.02.006
Najgebauer-Lejko D (2014) Effect of green tea supplementation on the microbiological, antioxidant, and sensory properties of probiotic milks. Dairy Sci Technol 94:327–339. https://doi.org/10.1007/s13594-014-0165-6
doi: 10.1007/s13594-014-0165-6
pubmed: 24883178
pmcid: 4035541
Cruz AG, Castro WF, Faria JA et al (2012) Probiotic yogurts manufactured with increased glucose oxidase levels: postacidification, proteolytic patterns, survival of probiotic microorganisms, production of organic acid and aroma compounds. J Dairy Sci 95:2261–2269. https://doi.org/10.3168/jds.2011-4582
doi: 10.3168/jds.2011-4582
pubmed: 22541455
Kailasapathy K, Harmstorf I, Phillips M (2008) Survival of Lactobacillus acidophilus and Bifidobacterium animalis ssp. lactis in stirred fruit yogurts. LWT 41:1317–1322. https://doi.org/10.1016/j.lwt.2007.08.009
doi: 10.1016/j.lwt.2007.08.009
Ranadheera CS, Evans CA, Adams MC et al (2013) Production of probiotic ice cream from goat’s milk and effect of packaging materials on product quality. Small Rumin Res 112:174–180. https://doi.org/10.1016/j.smallrumres.2012.12.020
doi: 10.1016/j.smallrumres.2012.12.020
Favaro-Trindade CS, Bernardi S, Bodini RB et al (2006) Sensory acceptability and stability of probiotic microorganisms and Vitamin C in fermented acerola (Malpighia emarginata DC.) ice cream. J Food Sci 71:S492–S495. https://doi.org/10.1111/j.1750-3841.2006.00100.x
doi: 10.1111/j.1750-3841.2006.00100.x
Matias NS, Padilha M, Bedani R et al (2016) In vitro gastrointestinal resistance of Lactobacillus acidophilus La-5 and Bifidobacterium animalis Bb-12 in soy and/or milk-based synbiotic apple ice creams. Int J Food Microbiol 234:83–93. https://doi.org/10.1016/j.ijfoodmicro.2016.06.037
doi: 10.1016/j.ijfoodmicro.2016.06.037
pubmed: 27387254
Akın M, Akın M, Kırmacı Z (2007) Effects of inulin and sugar levels on the viability of yogurt and probiotic bacteria and the physical and sensory characteristics in probiotic ice-cream. Food Chem 104:93–99. https://doi.org/10.1016/j.foodchem.2006.11.030
doi: 10.1016/j.foodchem.2006.11.030
Hamdy AM, Ahmed ME, Mehta D et al (2021) Enhancement of low-fat Feta cheese characteristics using probiotic bacteria. Food Sci Nutr 9:62–70. https://doi.org/10.1002/fsn3.1889
doi: 10.1002/fsn3.1889
pubmed: 33473271
Sabikhi L, Kumar MH, Mathur BN (2014) Bifidobacterium bifidum in probiotic Edam cheese: influence on cheese ripening. J Food Sci Technol 51:3902–3909. https://doi.org/10.1007/s13197-013-0945-7
doi: 10.1007/s13197-013-0945-7
pubmed: 25477659
Corbo MR, Albenzio M, De Angelis M et al (2001) Microbiological and biochemical properties of canestrato pugliese hard cheese supplemented with bifidobacteria. J Dairy Sci 84:551–561. https://doi.org/10.3168/jds.S0022-0302(01)74507-9
doi: 10.3168/jds.S0022-0302(01)74507-9
pubmed: 11286406
Afzaal M, Saeed F, Ateeq H et al (2020) Encapsulation of Bifidobacterium bifidum by internal gelation method to access the viability in cheddar cheese and under simulated gastrointestinal conditions. Food Sci Nutr 8:2739–2747. https://doi.org/10.1002/fsn3.1562
doi: 10.1002/fsn3.1562
pubmed: 32566191
pmcid: 7300049
Ong L, Henriksson A, Shah NP (2006) Development of probiotic Cheddar cheese containing Lactobacillus acidophilus, Lb. casei, Lb. paracasei and Bifidobacterium spp. and the influence of these bacteria on proteolytic patterns and production of organic acid. Int Dairy J 16:446–456. https://doi.org/10.1016/j.idairyj.2005.05.008
doi: 10.1016/j.idairyj.2005.05.008
Rodrigues D, Rocha-Santos TAP, Gomes AM et al (2012) Lipolysis in probiotic and synbiotic cheese: the influence of probiotic bacteria, prebiotic compounds and ripening time on free fatty acid profiles. Food Chem 131:1414–1421. https://doi.org/10.1016/j.foodchem.2011.10.010
doi: 10.1016/j.foodchem.2011.10.010
Almeida KE, Tamime AY, Oliveira MN (2008) Acidification rates of probiotic bacteria in Minas frescal cheese whey. LWT 41:311–316. https://doi.org/10.1016/j.lwt.2007.02.021
doi: 10.1016/j.lwt.2007.02.021
Fortin MH, Champagne CP, St-Gelais D et al (2011) Viability of Bifidobacterium longum in cheddar cheese curd during manufacture and storage, effect of microencapsulation and point of inoculation. Dairy Sci Technol 95:599–614. https://doi.org/10.1007/s13594-011-0034-5
doi: 10.1007/s13594-011-0034-5
Bergamini CV, Hynes ER, Palma SB et al (2009) Proteolytic activity of three probiotic strains in semihard cheese as single and mixed cultures, Lactobacillus acidophilus, Lactobacillus paracasei and Bifidobacterium lactis. Int Dairy Journal 19:467–475. https://doi.org/10.1016/j.idairyj.2009.02.008
doi: 10.1016/j.idairyj.2009.02.008
Skryplonek K, Dmytrow I, Mituniewicz-Malek A (2019) Probiotic fermented beverages based on acid whey. J Dairy Sci 102:7773–7780. https://doi.org/10.3168/jds.2019-16385
doi: 10.3168/jds.2019-16385
pubmed: 31301827
Gab-Allah RH, Shehta HA (2020) A new functional whey beverage, containing calcium and Date syrup (Dibs). Egypt J Nutr 35:53–75. https://doi.org/10.21608/ENJ.2020.144763
Baruzzi F, de Candia S, Quintieri L et al (2017) Development of a synbiotic beverage enriched with bifidobacteria strains and fortified with whey proteins. Front Microbiol 8:640. https://doi.org/10.3389/fmicb.2017.00640
doi: 10.3389/fmicb.2017.00640
pubmed: 28469606
pmcid: 5395566
Buriti FCA, Freitas SC, Egito AS et al (2014) Effects of tropical fruit pulps and partially hydrolysed galactomannan from Caesalpinia pulcherrima seeds on the dietary fibre content, probiotic viability, texture and sensory features of goat dairy beverages. LWT 59:196–203. https://doi.org/10.1016/j.lwt.2014.04.022
doi: 10.1016/j.lwt.2014.04.022
Ilıkkan ÖK, Bağdat EŞ (2021) Comparison of bacterial and fungal biodiversity of Turkish kefir grains with high-throughput metagenomic analysis. LWT 152:0023–6438. https://doi.org/10.1016/j.lwt.2021.112375
doi: 10.1016/j.lwt.2021.112375
Khademi F, Naghizadeh Raeisi S, Younesi M et al (2022) Effect of probiotic bacteria on physicochemical, microbiological, textural, sensory properties and fatty acid profile of sour cream. Food Chem Toxicol 166:113244. https://doi.org/10.1016/j.fct.2022.113244
doi: 10.1016/j.fct.2022.113244
pubmed: 35728727
Popovic N, Brdaric E, Dokic J et al (2020) Yogurt produced by novel natural starter cultures improves gut epithelial barrier in vitro. Microorganisms. https://doi.org/10.3390/microorganisms8101586
doi: 10.3390/microorganisms8101586
pubmed: 33076224
pmcid: 7602395
Falah F, Vasiee A, Yazdi FT et al (2021) Preparation and functional properties of synbiotic yogurt fermented with Lactobacillus brevis PML1 derived from a fermented cereal-dairy product. Biomed Res Int 2021:1057531. https://doi.org/10.1155/2021/1057531
doi: 10.1155/2021/1057531
pubmed: 34435040
pmcid: 8380496
Paszczyk B, Czarnowska-Kujawska M (2022) Fatty acid profile, conjugated linoleic acid content, and lipid quality indices in selected yogurts available on the Polish market. Animals (Basel). https://doi.org/10.3390/ani12010096
doi: 10.3390/ani12010096
pubmed: 36496944
den Hartigh LJ (2019) Conjugated linoleic acid effects on cancer, obesity, and atherosclerosis: a review of pre-clinical and human trials with current perspectives. Nutrients. https://doi.org/10.3390/nu11020370
doi: 10.3390/nu11020370
Olson DW, Aryana KJ (2022) Probiotic incorporation into yogurt and various novel yogurt-based products. Appl Sci 12:12607. https://doi.org/10.3390/app122412607
doi: 10.3390/app122412607
Wang KY, Li SN, Liu CS et al (2004) Effects of ingesting Lactobacillus- and Bifidobacterium-containing yogurt in subjects with colonized Helicobacter pylori. Am J Clin Nutr 80:737–741. https://doi.org/10.1093/ajcn/80.3.737
doi: 10.1093/ajcn/80.3.737
pubmed: 15321816
Klein A, Friedrich U, Vogelsang H et al (2008) Lactobacillus acidophilus 74–2 and Bifidobacterium animalis subsp lactis DGCC 420 modulate unspecific cellular immune response in healthy adults. Eur J Clin Nutr 62:584–593. https://doi.org/10.1038/sj.ejcn.1602761
doi: 10.1038/sj.ejcn.1602761
pubmed: 17440520
He T, Priebe MG, Zhong Y et al (2008) Effects of yogurt and bifidobacteria supplementation on the colonic microbiota in lactose-intolerant subjects. J Appl Microbiol 104:595–604. https://doi.org/10.1111/j.1365-2672.2007.03579.x
doi: 10.1111/j.1365-2672.2007.03579.x
pubmed: 17927751
Kabeerdoss J, Devi RS, Mary RR et al (2011) Effect of yoghurt containing Bifidobacterium lactis Bb12(R) on faecal excretion of secretory immunoglobulin A and human beta-defensin 2 in healthy adult volunteers. Nutr J 10:138. https://doi.org/10.1186/1475-2891-10-138
doi: 10.1186/1475-2891-10-138
pubmed: 22196482
pmcid: 3265429
Al-Sheraji SH, Ismail A, Manap MY et al (2012) Hypocholesterolaemic effect of yoghurt containing Bifidobacterium pseudocatenulatum G4 or Bifidobacterium longum BB536. Food Chem 135:356–361. https://doi.org/10.1016/j.foodchem.2012.04.120
doi: 10.1016/j.foodchem.2012.04.120
pubmed: 22868099
Ringel-Kulka T, Kotch JB, Jensen ET et al (2015) Randomized, double-blind, placebo-controlled study of synbiotic yogurt effect on the health of children. J Pediatr 166(1475–1481):e1471-1473. https://doi.org/10.1016/j.jpeds.2015.02.038
doi: 10.1016/j.jpeds.2015.02.038
Oberreuther-Moschner DL, Jahreis G, Rechkemmer G et al (2004) Dietary intervention with the probiotics Lactobacillus acidophilus 145 and Bifidobacterium longum 913 modulates the potential of human faecal water to induce damage in HT29clone19A cells. Br J Nutr 91:925–932. https://doi.org/10.1079/BJN20041108
doi: 10.1079/BJN20041108
pubmed: 15182396
Ataie-Jafari A, Larijani B, Alavi Majd H et al (2009) Cholesterol-lowering effect of probiotic yogurt in comparison with ordinary yogurt in mildly to moderately hypercholesterolemic subjects. Ann Nutr Metab 54:22–27. https://doi.org/10.1159/000203284
doi: 10.1159/000203284
pubmed: 19229114
Savard P, Lamarche B, Paradis ME et al (2011) Impact of Bifidobacterium animalis subsp. lactis BB-12 and Lactobacillus acidophilus LA-5-containing yoghurt, on fecal bacterial counts of healthy adults. Int J Food Microbiol 149:50–57. https://doi.org/10.1016/j.ijfoodmicro.2010.12.026
doi: 10.1016/j.ijfoodmicro.2010.12.026
pubmed: 21296446
Asemi Z, Samimi M, Tabassi Z et al (2013) Effect of daily consumption of probiotic yoghurt on insulin resistance in pregnant women: a randomized controlled trial. Eur J Clin Nutr 67:71–74. https://doi.org/10.1038/ejcn.2012.189
doi: 10.1038/ejcn.2012.189
pubmed: 23187955
Lee SHF, Ahmad SR, Lim YC et al (2022) The use of probiotic therapy in metabolic and neurological diseases. Front Nutr 9:887019. https://doi.org/10.3389/fnut.2022.887019
doi: 10.3389/fnut.2022.887019
pubmed: 35592636
pmcid: 9110960
Rezazadeh L, Alipour B, Jafarabadi MA et al (2021) Daily consumption effects of probiotic yogurt containing Lactobacillus acidophilus La5 and Bifidobacterium lactis Bb12 on oxidative stress in metabolic syndrome patients. Clin Nutr ESPEN 41:136–142. https://doi.org/10.1016/j.clnesp.2020.12.003
doi: 10.1016/j.clnesp.2020.12.003
pubmed: 33487257
Palaria A, Johnson-Kanda I, O’Sullivan DJ (2012) Effect of a synbiotic yogurt on levels of fecal bifidobacteria, clostridia, and enterobacteria. Appl Environ Microbiol 78:933–940. https://doi.org/10.1128/AEM.05848-11
doi: 10.1128/AEM.05848-11
pubmed: 22101054
pmcid: 3272998
Granata M, Brandi G, Borsari A et al (2013) Synbiotic yogurt consumption by healthy adults and the elderly: the fate of bifidobacteria and LGG probiotic strain. Int J Food Sci Nutr 64:162–168. https://doi.org/10.3109/09637486.2012.718742
doi: 10.3109/09637486.2012.718742
pubmed: 22946635
Ismail A, Azlan A, Manap M et al (2019) Nutrigenomic effects of fermented milk containing Bifidobacterium longum Bb536 on hepatic cholesterologenic genes in hypercholesterolemic rats. J Adv Dairy Res 7:220
Sheu BS, Wu JJ, Lo CY et al (2002) Impact of supplement with Lactobacillus- and Bifidobacterium-containing yogurt on triple therapy for Helicobacter pylori eradication. Aliment Pharmacol Ther 16:1669–1675. https://doi.org/10.1046/j.1365-2036.2002.01335.x
doi: 10.1046/j.1365-2036.2002.01335.x
pubmed: 12197847
de Vrese M, Kristen H, Rautenberg P et al (2011) Probiotic lactobacilli and bifidobacteria in a fermented milk product with added fruit preparation reduce antibiotic associated diarrhea and Helicobacter pylori activity. J Dairy Res 78:396–403. https://doi.org/10.1017/S002202991100063X
doi: 10.1017/S002202991100063X
pubmed: 21871144
Ishikawa H, Akedo I, Umesaki Y et al (2003) Randomized controlled trial of the effect of bifidobacteria-fermented milk on ulcerative colitis. J Am Coll Nutr 22:56–63. https://doi.org/10.1080/07315724.2003.10719276
doi: 10.1080/07315724.2003.10719276
pubmed: 12569115
Yang YX, He M, Hu G et al (2008) Effect of a fermented milk containing Bifidobacterium lactis DN-173010 on Chinese constipated women. World J Gastroenterol 14:6237–6243. https://doi.org/10.3748/wjg.14.6237
doi: 10.3748/wjg.14.6237
pubmed: 18985817
pmcid: 2761588
Mao M, Yu T, Xiong Y et al (2008) Effect of a lactose-free milk formula supplemented with bifidobacteria and streptococci on the recovery from acute diarrhoea. Asia Pac J Clin Nutr 17:30–34. PMID: 18364323
pubmed: 18364323
Tabbers MM, Chmielewska A, Roseboom MG et al (2009) Effect of the consumption of a fermented dairy product containing Bifidobacterium lactis DN-173 010 on constipation in childhood: a multicentre randomised controlled trial (NTRTC: 1571). BMC Pediatr 9:22. https://doi.org/10.1186/1471-2431-9-22
doi: 10.1186/1471-2431-9-22
pubmed: 19296845
pmcid: 2662858
Agrawal A, Houghton LA, Morris J et al (2009) Clinical trial: the effects of a fermented milk product containing Bifidobacterium lactis DN-173 010 on abdominal distension and gastrointestinal transit in irritable bowel syndrome with constipation. Aliment Pharmacol Ther 29:104–114. https://doi.org/10.1111/j.1365-2036.2008.03853.x
doi: 10.1111/j.1365-2036.2008.03853.x
pubmed: 18801055
Guyonnet D, Schlumberger A, Mhamdi L et al (2009) Fermented milk containing Bifidobacterium lactis DN-173 010 improves gastrointestinal well-being and digestive symptoms in women reporting minor digestive symptoms: a randomised, double-blind, parallel, controlled study. Br J Nutr 102:1654–1662. https://doi.org/10.1017/S0007114509990882
doi: 10.1017/S0007114509990882
pubmed: 19622191
Beitâne I, Ciprovica I (2013) Nutritional benefits of Bifidobacterium lactis in dairy products. Proc Latv Acad Sci Sect B 67:378–382. https://doi.org/10.2478/prolas-2013-0064
doi: 10.2478/prolas-2013-0064
Yan S, Yang B, Ross RP et al (2020) Bifidobacterium longum subsp. longum YS108R fermented milk alleviates DSS induced colitis via anti-inflammation, mucosal barrier maintenance and gut microbiota modulation. J Funct Foods. https://doi.org/10.1016/j.jff.2020.104153
doi: 10.1016/j.jff.2020.104153
Marteau P, Le Neve B, Quinquis L et al (2019) Consumption of a fermented milk product containing Bifidobacterium lactis CNCM I-2494 in women complaining of minor digestive symptoms: rapid response which is independent of dietary fibre intake or physical activity. Nutrients. https://doi.org/10.3390/nu11010092
doi: 10.3390/nu11010092
pubmed: 30621211
pmcid: 6356475
Tillisch K, Labus J, Kilpatrick L et al (2013) Consumption of fermented milk product with probiotic modulates brain activity. Gastroenterology 144:1394-1401.e1391–1394. https://doi.org/10.1053/j.gastro.2013.02.043
doi: 10.1053/j.gastro.2013.02.043
pubmed: 23474283
Urita Y, Goto M, Watanabe T et al (2015) Continuous consumption of fermented milk containing Bifidobacterium bifidum YIT 10347 improves gastrointestinal and psychological symptoms in patients with functional gastrointestinal disorders. Biosci Microbiota Food Health 34:37–44. https://doi.org/10.12938/bmfh.2014-017
Gomi A, Yamaji K, Watanabe O et al (2018) Bifidobacterium bifidum YIT 10347 fermented milk exerts beneficial effects on gastrointestinal discomfort and symptoms in healthy adults: a double-blind, randomized, placebo-controlled study. J Dairy Sci 101:4830–4841. https://doi.org/10.3168/jds.2017-13803
doi: 10.3168/jds.2017-13803
pubmed: 29573807
Marteau P, Cuillerier E, Meance S et al (2002) Bifidobacterium animalis strain DN-173 010 shortens the colonic transit time in healthy women: a double-blind, randomized, controlled study. Aliment Pharmacol Ther 16:587–594. https://doi.org/10.1046/j.1365-2036.2002.01188.x
doi: 10.1046/j.1365-2036.2002.01188.x
pubmed: 11876714
Xiao JZ, Kondo S, Takahashi N et al (2003) Effects of milk products fermented by Bifidobacterium longum on blood lipids in rats and healthy adult male volunteers. J Dairy Sci 86:2452–2461. https://doi.org/10.3168/jds.S0022-0302(03)73839-9
doi: 10.3168/jds.S0022-0302(03)73839-9
pubmed: 12906063
Eales J, Gibson P, Whorwell P et al (2017) Systematic review and meta-analysis: the effects of fermented milk with Bifidobacterium lactis CNCM I-2494 and lactic acid bacteria on gastrointestinal discomfort in the general adult population. Therap Adv Gastroenterol 10:74–88. https://doi.org/10.1177/1756283X16670075
doi: 10.1177/1756283X16670075
pubmed: 28286561
Marteau P, Guyonnet D, Lafaye de Micheaux P et al (2013) A randomized, double-blind, controlled study and pooled analysis of two identical trials of fermented milk containing probiotic Bifidobacterium lactis CNCM I-2494 in healthy women reporting minor digestive symptoms. Neurogastroenterol Motil 25:331-e252. https://doi.org/10.1111/nmo.12078
doi: 10.1111/nmo.12078
pubmed: 23480238
Park HE, Kim YJ, Do KH et al (2018) Effects of Queso Blanco cheese containing Bifidobacterium longum KACC 91563 on the intestinal microbiota and short chain fatty acid in healthy companion dogs. Korean J Food Sci Anim Resour 38:1261–1272. https://doi.org/10.5851/kosfa.2018.e62
doi: 10.5851/kosfa.2018.e62
pubmed: 30675119
pmcid: 6335144
Rasinkangas P, Forssten SD, Marttinen M et al (2022) Bifidobacterium animalis subsp. lactis Bi-07 supports lactose digestion in vitro and in randomized, placebo- and lactase-controlled clinical trials. Am J Clin Nutr 116:1580–1594. https://doi.org/10.1093/ajcn/nqac264
doi: 10.1093/ajcn/nqac264
pubmed: 36149331
pmcid: 9761758
Viborg AH, Fredslund F, Katayama T et al (2014) A beta1–6/beta1–3 galactosidase from Bifidobacterium animalis subsp. lactis Bl-04 gives insight into sub-specificities of beta-galactoside catabolism within Bifidobacterium. Mol Microbiol. https://doi.org/10.1111/mmi.12815
doi: 10.1111/mmi.12815
pubmed: 25287704
Volokh O, Klimenko N, Berezhnaya Y et al (2019) Human gut microbiome response induced by fermented dairy product intake in healthy volunteers. Nutrients. https://doi.org/10.3390/nu11030547
doi: 10.3390/nu11030547
pubmed: 30836671
pmcid: 6470569
Singh S (2001) Health beverages from milk permeate. Paper presented in XI CAS course DT Division. NDRI Karnal, India
Neyrinck AM, Possemiers S, Druart C et al (2011) Prebiotic effects of wheat arabinoxylan related to the increase in bifidobacteria, Roseburia and Bacteroides/Prevotella in diet-induced obese mice. PLoS ONE 6:e20944. https://doi.org/10.1371/journal.pone.0020944
doi: 10.1371/journal.pone.0020944
pubmed: 21695273
pmcid: 3111466
Monteagudo-Mera A, Arthur JC, Jobin C et al (2016) High purity galacto-oligosaccharides enhance specific Bifidobacterium species and their metabolic activity in the mouse gut microbiome. Benef Microbes 7:247–264. https://doi.org/10.3920/BM2015.0114
doi: 10.3920/BM2015.0114
pubmed: 26839072
pmcid: 4974821
Haji Ghafarloo M, Jouki M, Tabari M (2020) Production and characterization of synbiotic Doogh, a yogurt-based Iranian drink by gum arabic, ginger extract and B. bifidum. J Food Sci Technol 57:1158–1166. https://doi.org/10.1007/s13197-019-04151-4
doi: 10.1007/s13197-019-04151-4
pubmed: 32123437
Gomez Quintero DF, Kok CR, Hutkins R (2022) The future of synbiotics: rational formulation and design. Front Microbiol 13:919725. https://doi.org/10.3389/fmicb.2022.919725
doi: 10.3389/fmicb.2022.919725
pubmed: 35935226
pmcid: 9354465
Piscione M, Mazzone M, Di Marcantonio MC et al (2021) Eradication of Helicobacter pylori and gastric cancer: a controversial relationship. Front Microbiol 12:630852. https://doi.org/10.3389/fmicb.2021.630852
doi: 10.3389/fmicb.2021.630852
pubmed: 33613500
pmcid: 7889593
Sheu BS, Cheng HC, Kao AW et al (2006) Pretreatment with Lactobacillus- and Bifidobacterium-containing yogurt can improve the efficacy of quadruple therapy in eradicating residual Helicobacter pylori infection after failed triple therapy. Am J Clin Nutr 83:864–869. https://doi.org/10.1093/ajcn/83.4.864
doi: 10.1093/ajcn/83.4.864
pubmed: 16600940
Kassi E, Pervanidou P, Kaltsas G et al (2011) Metabolic syndrome: definitions and controversies. BMC Med 9:48. https://doi.org/10.1186/1741-7015-9-48
doi: 10.1186/1741-7015-9-48
pubmed: 21542944
pmcid: 3115896
Beena A, Prasad V (1997) Effect of yogurt and bifidus yogurt fortified with skim milk powder, condensed whey and lactose-hydrolysed condensed whey on serum cholesterol and triacylglycerol levels in rats. J Dairy Res 64:453–457. https://doi.org/10.1017/s0022029997002252
doi: 10.1017/s0022029997002252
pubmed: 9275259
Sarkar S, Misra AK (2001) Characteristics of dietetic yoghurt. Indian J Dairy Biosci 12:76–79
Stuivenberg GA, Chmiel JA, Akouris PP et al (2023) Supplementing yogurt with probiotic bifidobacteria to counter chronic kidney disease. Fermentation 9:391. https://doi.org/10.3390/fermentation9040391
doi: 10.3390/fermentation9040391
Aiello A, Farzaneh F, Candore G et al (2019) Immunosenescence and its hallmarks: how to oppose aging strategically? A review of potential options for therapeutic intervention. Front Immunol 10:2247. https://doi.org/10.3389/fimmu.2019.02247
doi: 10.3389/fimmu.2019.02247
pmcid: 6773825
Legesse Bedada T, Feto TK, Awoke KS et al (2020) Probiotics for cancer alternative prevention and treatment. Biomed Pharmacother 129:110409. https://doi.org/10.1016/j.biopha.2020.110409
doi: 10.1016/j.biopha.2020.110409
pubmed: 32563987
Metchnikoff É (1907) The prolongation of life: optimistic studies. Heinemann, London, UK, p 1907
Ishibashi N, Shimamura S (1993) Bifidobacteria: Research and Development in Japan. J Food Technol 47:129–134
Varga L, Sule J, Nagy P (2014) Short communication: survival of the characteristic microbiota in probiotic fermented camel, cow, goat, and sheep milks during refrigerated storage. J Dairy Sci 97:2039–2044. https://doi.org/10.3168/jds.2013-7339
doi: 10.3168/jds.2013-7339
Gill HS, Rutherfurd KJ, Cross ML et al (2001) Enhancement of immunity in the elderly by dietary supplementation with the probiotic Bifidobacterium lactis HN019. Am J Clin Nutr 74:833–839. https://doi.org/10.1093/ajcn/74.6.833
doi: 10.1093/ajcn/74.6.833
pubmed: 11722966
Odamaki T, Xiao JZ, Yonezawa S et al (2011) Improved viability of bifidobacteria in fermented milk by cocultivation with Lactococcus lactis subspecies lactis. J Dairy Sci 94:1112–1121. https://doi.org/10.3168/jds.2010-3286
doi: 10.3168/jds.2010-3286
pubmed: 21338777
Gorska A, Przystupski D, Niemczura MJ et al (2019) Probiotic bacteria: a promising tool in cancer prevention and therapy. Curr Microbiol 76:939–949. https://doi.org/10.1007/s00284-019-01679-8
doi: 10.1007/s00284-019-01679-8
pubmed: 30949803
pmcid: 6586914
Wang L, Vuletic I, Deng D et al (2017) Bifidobacterium breve as a delivery vector of IL-24 gene therapy for head and neck squamous cell carcinoma in vivo. Gene Ther 24:699–705. https://doi.org/10.1038/gt.2017.74
doi: 10.1038/gt.2017.74
pubmed: 28805796
Abdelali H, Cassand P, Soussotte V et al (1995) Effect of dairy products on initiation of precursor lesions of colon cancer in rats. Nutr Cancer 24:121–132. https://doi.org/10.1080/01635589509514400
doi: 10.1080/01635589509514400
pubmed: 8584448
Unno T, Choi JH, Hur HG et al (2015) Changes in human gut microbiota influenced by probiotic fermented milk ingestion. J Dairy Sci 98:3568–3576. https://doi.org/10.3168/jds.2014-8943
doi: 10.3168/jds.2014-8943
pubmed: 25864056
Granier A, Goulet O, Hoarau C (2013) Fermentation products: immunological effects on human and animal models. Pediatr Res 74:238–244. https://doi.org/10.1038/pr.2013.76
doi: 10.1038/pr.2013.76
pubmed: 23670282
Miki K, Urita Y, Ishikawa F et al (2007) Effect of Bifidobacterium bifidum fermented milk on Helicobacter pylori and serum pepsinogen levels in humans. J Dairy Sci 90:2630–2640. https://doi.org/10.3168/jds.2006-803
doi: 10.3168/jds.2006-803
pubmed: 17517703
Forootan M, Bagheri N, Darvishi M (2018) Chronic constipation: a review of literature. Medicine (Baltimore) 97:e10631. https://doi.org/10.1097/MD.0000000000010631
doi: 10.1097/MD.0000000000010631
pubmed: 29768326
Guyonnet D, Chassany O, Ducrotte P et al (2007) Effect of a fermented milk containing Bifidobacterium animalis DN-173 010 on the health-related quality of life and symptoms in irritable bowel syndrome in adults in primary care: a multicentre, randomized, double-blind, controlled trial. Aliment Pharmacol Ther 26:475–486. https://doi.org/10.1111/j.1365-2036.2007.03362.x
doi: 10.1111/j.1365-2036.2007.03362.x
pubmed: 17635382
Guglielmetti S, Mora D, Gschwender M et al (2011) Randomised clinical trial: Bifidobacterium bifidum MIMBb75 significantly alleviates irritable bowel syndrome and improves quality of life–a double-blind, placebo-controlled study. Aliment Pharmacol Ther 33:1123–1132. https://doi.org/10.1111/j.1365-2036.2011.04633.x
doi: 10.1111/j.1365-2036.2011.04633.x
pubmed: 21418261
Perler BK, Ungaro R, Baird G et al (2019) Presenting symptoms in inflammatory bowel disease: descriptive analysis of a community-based inception cohort. BMC Gastroenterol 19:47. https://doi.org/10.1186/s12876-019-0963-7
doi: 10.1186/s12876-019-0963-7
pubmed: 30940072
pmcid: 6446285
Yan S, Yang B, Zhao J et al (2019) A ropy exopolysaccharide producing strain Bifidobacterium longum subsp. longum YS108R alleviates DSS-induced colitis by maintenance of the mucosal barrier and gut microbiota modulation. Food Funct 10:1595–1608. https://doi.org/10.1039/c9fo00014c
doi: 10.1039/c9fo00014c
pubmed: 30806428
Bouvier M, Meance S, Bouley C et al (2001) Effects of consumption of a milk fermented with the probiotic strain Bifidobacterium animalis DN-173 010 on colonic transit times in healthy humans. Biosci Microflora 20:43–48. https://doi.org/10.12938/bifidus1996.20.43
Kato K, Mizuno S, Umesaki Y et al (2004) Randomized placebo-controlled trial assessing the effect of bifidobacteria-fermented milk on active ulcerative colitis. Aliment Pharmacol Ther 20:1133–1141. https://doi.org/10.1111/j.1365-2036.2004.02268.x
doi: 10.1111/j.1365-2036.2004.02268.x
pubmed: 15569116
Ishikawa H, Matsumoto S, Ohashi Y et al (2011) Beneficial effects of probiotic Bifidobacterium and galacto-oligosaccharide in patients with ulcerative colitis: a randomized controlled study. Digestion 84:128–133. https://doi.org/10.1159/000322977
doi: 10.1159/000322977
pubmed: 21525768
Matsuoka K, Uemura Y, Kanai T et al (2018) Efficacy of Bifidobacterium breve fermented milk in maintaining remission of ulcerative colitis. Dig Dis Sci 63:1910–1919. https://doi.org/10.1007/s10620-018-4946-2
doi: 10.1007/s10620-018-4946-2
pubmed: 29450747
pmcid: 6015104
Chatterjee S, Kar P, Das T et al (2013) Randomised placebo-controlled double blind multicentric trial on efficacy and safety of Lactobacillus acidophilus LA-5 and Bifidobacterium BB-12 for prevention of antibiotic-associated diarrhoea. J Assoc Physicians India 61:708–712
pubmed: 24772726
Bourrie BC, Willing BP, Cotter PD (2016) The microbiota and health promoting characteristics of the fermented beverage kefir. Front Microbiol 7:647. https://doi.org/10.3389/fmicb.2016.00647
doi: 10.3389/fmicb.2016.00647
pubmed: 27199969
pmcid: 4854945
Valdes-Varela L, Alonso-Guervos M, Garcia-Suarez O et al (2016) Screening of bifidobacteria and lactobacilli able to antagonize the cytotoxic effect of Clostridium difficile upon intestinal epithelial HT29 monolayer. Front Microbiol 7:577. https://doi.org/10.3389/fmicb.2016.00577
doi: 10.3389/fmicb.2016.00577
pubmed: 27148250
pmcid: 4840286
Thibault H, Aubert-Jacquin C, Goulet O (2004) Effects of long-term consumption of a fermented infant formula (with Bifidobacterium breve c50 and Streptococcus thermophilus 065) on acute diarrhea in healthy infants. J Pediatr Gastroenterol Nutr 39:147–152. https://doi.org/10.1097/00005176-200408000-00004
doi: 10.1097/00005176-200408000-00004
pubmed: 15269618
Peters SA, Singhateh Y, Mackay D et al (2016) Total cholesterol as a risk factor for coronary heart disease and stroke in women compared with men: a systematic review and meta-analysis. Atherosclerosis 248:123–131. https://doi.org/10.1016/j.atherosclerosis.2016.03.016
doi: 10.1016/j.atherosclerosis.2016.03.016
pubmed: 27016614
Kriaa A, Bourgin M, Potiron A et al (2019) Microbial impact on cholesterol and bile acid metabolism: current status and future prospects. J Lipid Res 60:323–332. https://doi.org/10.1194/jlr.R088989
doi: 10.1194/jlr.R088989
pubmed: 30487175
Bogovic Matijasic B, Obermajer T, Lipoglavsek L et al (2016) Effects of synbiotic fermented milk containing Lactobacillus acidophilus La-5 and Bifidobacterium animalis ssp. lactis BB-12 on the fecal microbiota of adults with irritable bowel syndrome: a randomized double-blind, placebo-controlled trial. J Dairy Sci 99:5008–5021. https://doi.org/10.3168/jds.2015-10743
doi: 10.3168/jds.2015-10743
pubmed: 27157575
Wang H, Braun C, Murphy EF et al (2019) Bifidobacterium longum 1714 strain modulates brain activity of healthy volunteers during social stress. Am J Gastroenterol 114:1152–1162. https://doi.org/10.14309/ajg.0000000000000203
Wang H, Lee IS, Braun C et al (2016) Effect of probiotics on central nervous system functions in animals and humans: a systematic review. J Neurogastroenterol Motil 22:589–605. https://doi.org/10.5056/jnm16018
doi: 10.5056/jnm16018
pubmed: 27413138
pmcid: 5056568
Zhu G, Zhao J, Zhang H et al (2021) Administration of Bifidobacterium breve improves the brain function of abeta(1–42)-treated mice via the modulation of the gut microbiome. Nutrients. https://doi.org/10.3390/nu13051602
doi: 10.3390/nu13051602
pubmed: 34959883
pmcid: 8707717
Shin HS, Lee JH, Pestka JJ et al (2000) Viability of bifidobacteria in commercial dairy products during refrigerated storage. J Food Prot 63:327–331. https://doi.org/10.4315/0362-028x-63.3.327
doi: 10.4315/0362-028x-63.3.327
pubmed: 10716560
Castro JM, Tornadijo ME, Fresno JM et al (2015) Biocheese: a food probiotic carrier. Biomed Res Int 2015:723056. https://doi.org/10.1155/2015/723056
doi: 10.1155/2015/723056
pubmed: 25802862
pmcid: 4352748
Roy D (2005) Technological aspects related to the use of bifidobacteria in dairy products. Lait 85:39–56
doi: 10.1051/lait:2004026
da Cruz AG, Buriti FCA, Souza CHB et al (2009) Probiotic cheese: health benefits, technological and stability aspects. Trends Food Sci Technol 20:344–354. https://doi.org/10.1016/j.tifs.2009.05.001
doi: 10.1016/j.tifs.2009.05.001
Hammam ARA, Ahmed MSI (2019) Technological aspects, health benefits, and sensory properties of probiotic cheese. SN Appl Sci 1:1113. https://doi.org/10.1007/s42452-019-1154-4
doi: 10.1007/s42452-019-1154-4
Karimi R, Mortazavian AM, Cruz AG (2011) Viability of probiotic microorganisms in cheese during production and storage: a review. Dairy Sci Technol 91:283–308. https://doi.org/10.1007/s13594-011-0005-x
doi: 10.1007/s13594-011-0005-x
Daigle A, Roy D, Belanger G et al (1999) Production of probiotic cheese (cheddar-like cheese) using enriched cream fermented by Bifidobacterium infantis. J Dairy Sci 82:1081–1091. https://doi.org/10.3168/jds.S0022-0302(99)75330-0
doi: 10.3168/jds.S0022-0302(99)75330-0
pubmed: 10386294
Delcenserie V, Taminiau B, Gavini F et al (2013) Detection and characterization of Bifidobacterium crudilactis and B. mongoliense able to grow during the manufacturing process of French raw milk cheeses. BMC Microbiol 13:239. https://doi.org/10.1186/1471-2180-13-239
doi: 10.1186/1471-2180-13-239
pubmed: 24164698
pmcid: 4231354
Milani C, Alessandri G, Mancabelli L et al (2019) Bifidobacterial distribution across Italian cheeses produced from raw milk. Microorganisms. https://doi.org/10.3390/microorganisms7120599
doi: 10.3390/microorganisms7120599
pubmed: 31766566
pmcid: 6955966
Nieuwenhove CP, Oliszewski R, Gonzalez SN et al (2007) Influence of bacteria used as adjunct culture and sunflower oil addition on conjugated linoleic acid content in buffalo cheese. Food Res Int 40:559–564. https://doi.org/10.1016/j.foodres.2006.08.003
doi: 10.1016/j.foodres.2006.08.003
Peiroten A, Gaya P, Arques JL et al (2019) Technological properties of bifidobacterial strains shared by mother and child. Biomed Res Int 2019:9814623. https://doi.org/10.1155/2019/9814623
doi: 10.1155/2019/9814623
pubmed: 30793000
pmcid: 6354206
Vinderola C, Bailo N, Reinheimer J (2000) Survival of probiotic microflora in Argentinian yoghurts during refrigerated storage. Food Res Int 33:97–102. https://doi.org/10.1016/S0963-9969(00)00011-9
doi: 10.1016/S0963-9969(00)00011-9
Ahmed ME, Rathnakumar K, Awasti N et al (2021) Influence of probiotic adjunct cultures on the characteristics of low-fat Feta cheese. Food Sci Nutr 9:1512–1520. https://doi.org/10.1002/fsn3.2121
doi: 10.1002/fsn3.2121
pubmed: 33747465
pmcid: 7958540
Demers-Mathieu V, St-Gelais D, Audy J et al (2016) Effect of the low-fat Cheddar cheese manufacturing process on the viability of Bifidobacterium animalis subsp. lactis, Lactobacillus rhamnosus, Lactobacillus paracasei/casei, and Lactobacillus plantarum isolates. J Funct Foods 24:327–337. https://doi.org/10.1016/j.jff.2016.04.025
doi: 10.1016/j.jff.2016.04.025
Hidalgo-Cantabrana C, Delgado S, Ruiz L et al (2017) Bifidobacteria and their health-promoting effects. Microbiol Spectr. https://doi.org/10.1128/microbiolspec.BAD-0010-2016
doi: 10.1128/microbiolspec.BAD-0010-2016
pubmed: 28643627
Brandelli A, Daroit DJ, Corrêa APF (2015) Whey as a source of peptides with remarkable biological activities. Food Res Int 73:149–161. https://doi.org/10.1016/j.foodres.2015.01.016
doi: 10.1016/j.foodres.2015.01.016
Minj S, Anand S (2020) Whey proteins and its derivatives: bioactivity, functionality, and current applications. Dairy 1:233–258. https://doi.org/10.3390/dairy1030016
doi: 10.3390/dairy1030016
Pires AF, Marnotes NG, Rubio OD et al (2021) Dairy by-products: a review on the valorization of whey and second cheese whey. Foods. https://doi.org/10.3390/foods10051067
doi: 10.3390/foods10051067
pubmed: 34066033
pmcid: 8151190
Goyal N. Gandhi DN (2008) Whey, a carrier of probiotics against diarrhoea. [On-line]. Available from: https://www.dairyscience.info/probiotics/110-whey-probiotics.html . Accessed 4 Nov 2023
Mehra R, Kumar H, Kumar N et al (2021) Whey proteins processing and emergent derivatives: an insight perspective from constituents, bioactivities, functionalities to therapeutic applications. J Funct Foods. https://doi.org/10.1016/j.jff.2021.104760
doi: 10.1016/j.jff.2021.104760
Bejarano-Toro E, Sepulveda-Valencia JU, Rodriguez-Sandoval E (2022) Use of ultrafiltration technology to concentrate whey proteins after white cheese manufacturing. Rev Fac Nac Agron Medellín 75(2):9961–9969. https://doi.org/10.15446/rfnam.v75n2.98600
Shukla P, Kushwaha A (2017) Development of probiotic beverage from whey and orange juice. J Nutr Food Sci. https://doi.org/10.4172/2155-9600.1000629