Differential Impact of Zinc Salt Precursors on Physiognomies, Anticancerous, and Antibacterial Activities of Zinc Oxide Nanoparticles.

Acacia nilotica Anti-cancerous Antibacterial HepG2 cells Klebsiella pneumonia Listeria monocytogenes Nanoparticles Precursor salt Zinc oxide

Journal

Applied biochemistry and biotechnology
ISSN: 1559-0291
Titre abrégé: Appl Biochem Biotechnol
Pays: United States
ID NLM: 8208561

Informations de publication

Date de publication:
18 Nov 2023
Historique:
accepted: 07 11 2023
medline: 18 11 2023
pubmed: 18 11 2023
entrez: 18 11 2023
Statut: aheadofprint

Résumé

Zinc oxide nanoparticles (ZnONPs) are enormously popular semi-conductor metal oxides with diverse applications in every field of science. Many physical and chemical methods applied for the synthesis of ZnONPs are being rejected due to their environmental hazards. Therefore, ZnONPs synthesized from plant extracts are steered as eco-friendly showing more biocompatibility and biodegradability. Additionally, various synthesis conditions such as the type of precursor salt also play a role in influencing the physicochemical and biological properties of ZnONPs. In this study, green synthesis of ZnONPs from Acacia nilotica was carried out using zinc acetate (ZA-AN-ZNPs), zinc nitrate (ZN-AN-ZNPs), and zinc sulfate (ZS-AN-ZNPs) precursor salts. Surprisingly, characterization of ZnONPs using UV-visible spectroscopy, TEM, XRD, and EDX revealed the important role precursor salts played in influencing the size and shape of ZnONPs, i.e., 20-23 nm spherical (ZA-AN-ZNPs), 55-59 nm triangular (ZN-AN-ZNPs), and 94-97 nm nano-flowers (ZS-AN-ZNPs). FTIR analysis showed the involvement of alkaloids, alcohols, carboxylic acid, and phenolic compounds present in Acacia nilotica extract during the synthesis process. Since different precursor salts showed different morphology of ZnONPs, their biological activities were also variable. ZN-AN-ZNPs showed the highest cytotoxicity towards HepG2 cells with the lowest cell viability (28.92 ± 0.99%), highest ROS/RNS production (3425.3 ± 184.58 relative DHR123 fluorescence), and loss of mitochondrial membrane potential (1645.2 ± 32.12 relative fluorescence unit) as well as induced significant caspase-3 gene expression. In addition to this, studying the zone of inhibitions and minimum bactericidal and inhibitory concentrations of ZnONPs showed their exceptional potential as antibacterial agents. At MIC as low as 8 µg/mL, ZA-AN-ZNPs and ZN-AN-ZNPs exhibited significant bactericidal activities against human pathogens Klebsiella pneumoniae and Listeria monocytogenes, respectively. Furthermore, alkaline phosphatase, DNA/RNA leakage, and phosphate ion leakage studies revealed that a damage to the bacterial cell membrane and cell wall is involved in mediating the antibacterial effects of ZnONPs.

Identifiants

pubmed: 37979085
doi: 10.1007/s12010-023-04781-7
pii: 10.1007/s12010-023-04781-7
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Jafarirad, S., et al. (2016). Biofabrication of zinc oxide nanoparticles using fruit extract of Rosa canina and their toxic potential against bacteria: A mechanistic approach. Materials Science and Engineering: C, 59, 296–302.
doi: 10.1016/j.msec.2015.09.089
Osman, D. A. M., & Mustafa, M. A. (2015). Synthesis and characterization of zinc oxide nanoparticles using zinc acetate dihydrate and sodium hydroxide. Journal of Nanoscience and Nanoengineering, 1(4), 248–251.
Zubair, M., et al. (2022). Green synthesis and characterization of silver nanoparticles from Acacia nilotica and their anticancer, antidiabetic and antioxidant efficacy. Environmental Pollution, 304, 119249.
doi: 10.1016/j.envpol.2022.119249
Agarwal, H., Venkat Kumar, S., & Rajeshkumar, S. (2017). A review on green synthesis of zinc oxide nanoparticles – An eco-friendly approach. Resource-Efficient Technologies., 3(4), 406–413.
doi: 10.1016/j.reffit.2017.03.002
Ambika, S., & Sundrarajan, M. (2015). Green biosynthesis of ZnO nanoparticles using Vitex negundo L. extract: Spectroscopic investigation of interaction between ZnO nanoparticles and human serum albumin. Journal of Photochemistry and Photobiology B: Biology, 149, 143–148.
doi: 10.1016/j.jphotobiol.2015.05.004
Sierra, M. J., Herrera, A. P., & Ojeda, K. A. (2018). Synthesis of zinc oxide nanoparticles from mango and soursop leaf extracts. Contemporary Engineering Sciences, 11(8), 395–403.
doi: 10.12988/ces.2018.8228
Jiang, J., Pi, J., & Cai, J. (2018). The advancing of zinc oxide nanoparticles for biomedical applications. Bioinorganic Chemistry and Applications, 2018, 1–18.
doi: 10.1155/2018/1062562
Akhtar, M. J., et al. (2012). Zinc oxide nanoparticles selectively induce apoptosis in human cancer cells through reactive oxygen species. International Journal of Nanomedicine, 7, 845.
pmcid: 3289443
Yang, J. D., et al. (2019). A global view of hepatocellular carcinoma: Trends, risk, prevention and management. Nature Reviews Gastroenterology & Hepatology, 16(10), 589–604.
doi: 10.1038/s41575-019-0186-y
Barabadi, H., et al. (2020). Recent advances in biological mediated cancer research using silver nanoparticles as a promising strategy for hepatic cancer therapeutics: A systematic review. Nanomedicine Journal, 7(4), 251–265.
Lu, X., et al. (2011). In vitro cytotoxicity and induction of apoptosis by silica nanoparticles in human HepG2 hepatoma cells. International Journal of Nanomedicine, 6, 1889–1901.
pmcid: 3173051
Islam, F., et al. (2022). Exploring the journey of zinc oxide nanoparticles (ZnO-NPs) toward biomedical applications. Materials, 15(6), 2160.
pmcid: 8951444 doi: 10.3390/ma15062160
Aminul, P., et al. (2021). Evaluation of antibiotic resistance patterns in clinical isolates of Klebsiella pneumoniae in Bangladesh. Biosafety and Health, 3(6), 301–306.
doi: 10.1016/j.bsheal.2021.11.001
Morvan, A., et al. (2010). Antimicrobial resistance of Listeria monocytogenes strains isolated from humans in France. Antimicrobial agents and chemotherapy, 54(6), 2728–2731.
Podschun, R., & Ullmann, U. (1998). Klebsiella spp. as nosocomial pathogens: Epidemiology, taxonomy, typing methods, and pathogenicity factors. Clinical microbiology reviews, 11(4), 589–603.
pmcid: 88898 doi: 10.1128/CMR.11.4.589
Jondle, C. N., et al. (2018). Klebsiella pneumoniae infection of murine neutrophils impairs their efferocytic clearance by modulating cell death machinery. PLoS pathogens, 14(10), e1007338.
pmcid: 6181436 doi: 10.1371/journal.ppat.1007338
Cruz-Córdova, A., et al. (2014). Pathogenic determinants of clinical Klebsiella pneumoniae strains associated with their persistence in the hospital environment. Boletín Médico del Hospital Infantil de México, 71(1), 15–24.
Sawosz, E., et al. (2010). Visualization of gold and platinum nanoparticles interacting with Salmonella enteritidis and Listeria monocytogenes. International Journal of Nanomedicine, 5, 631.
pmcid: 2939708
Schuppler, M., & Loessner, M. J. (2010). The opportunistic pathogen Listeria monocytogenes: Pathogenicity and interaction with the mucosal immune system. International Journal of Inflammation, 2010, 1–12.
doi: 10.4061/2010/704321
Hanes, R. M., & Huang, Z. (2022). Investigation of antimicrobial resistance genes in Listeria monocytogenes from 2010 through to 2021. International Journal of Environmental Research and Public Health, 19(9), 5506.
pmcid: 9099560 doi: 10.3390/ijerph19095506
Khan, A. K., et al. (2021). Effect of UV irradiation (A and C) on Casuarina equisetifolia-mediated biosynthesis and characterization of antimicrobial and anticancer activity of biocompatible zinc oxide nanoparticles. Pharmaceutics, 13(11), 1977.
pmcid: 8622962 doi: 10.3390/pharmaceutics13111977
Anjum, S., Abbasi, B. H., & Hano, C. (2017). Trends in accumulation of pharmacologically important antioxidant-secondary metabolites in callus cultures of Linum usitatissimum L. Plant Cell, Tissue and Organ Culture, 129(1), 73–87.
doi: 10.1007/s11240-016-1158-3
Gnanasangeetha, D., & Thambavani, D. S. (2013). Biogenic production of zinc oxide nanoparticles using Acalypha indica. Journal of Chemical, Biological and Physical Sciences, 4(1), 238.
Chikkanna, M. M., Neelagund, S. E., & Rajashekarappa, K. K. (2019). Green synthesis of zinc oxide nanoparticles (ZnO NPs) and their biological activity. SN Applied Sciences, 1(1), 1–10.
doi: 10.1007/s42452-018-0095-7
Barzinjy, A. A., & Azeez, H. H. (2020). Green synthesis and characterization of zinc oxide nanoparticles using Eucalyptus globulus Labill. leaf extract and zinc nitrate hexahydrate salt. SN Applied Sciences, 2(5), 1–14.
doi: 10.1007/s42452-020-2813-1
Tungmunnithum, D., et al. (2020). A critical cross-species comparison of pollen from Nelumbo nucifera Gaertn. vs. Nymphaea lotus L. for authentication of Thai medicinal herbal tea. Plants, 9(7), 921.
pmcid: 7412456 doi: 10.3390/plants9070921
Faisal, S., et al. (2021). Green synthesis of zinc oxide (ZnO) nanoparticles using aqueous fruit extracts of Myristica fragrans: Their characterizations and biological and environmental applications. ACS Omega, 6(14), 9709–9722.
pmcid: 8047667 doi: 10.1021/acsomega.1c00310
Fakhari, S., Jamzad, M., & KabiriFard, H. (2019). Green synthesis of zinc oxide nanoparticles: A comparison. Green Chemistry Letters and Reviews, 12(1), 19–24.
doi: 10.1080/17518253.2018.1547925
Nazir, M., et al. (2019). Differential production of phenylpropanoid metabolites in callus cultures of Ocimum basilicum L. with distinct in vitro antioxidant activities and in vivo protective effects against UV stress. Journal of Agricultural and Food Chemistry, 67(7), 1847–1859.
doi: 10.1021/acs.jafc.8b05647
Abbasi, B., Anjum, S., & Hano, C. (2017). Differential effects of in vitro cultures of Linum usitatissimum L. (Flax) on biosynthesis, stability, antibacterial and antileishmanial activities of zinc oxide nanoparticles: A mechanistic approach. RSC Advances., 7(26), 15931–15943.
doi: 10.1039/C7RA02070H
Cendrowski, A., et al. (2020). Antibacterial and antioxidant activity of extracts from rose fruits (Rosa rugosa). Molecules, 25(6), 1365.
pmcid: 7144371 doi: 10.3390/molecules25061365
Xu, M., et al. (2019). Chemical composition, antibacterial properties, and mechanism of Smilax china L. polyphenols. Applied Microbiology and Biotechnology., 103(21), 9013–9022.
doi: 10.1007/s00253-019-10100-0
Guo, L., et al. (2019). Antibacterial activity and action mechanism of questin from marine Aspergillus flavipes HN4–13 against aquatic pathogen Vibrio harveyi. 3 Biotech., 9(1), 1–7.
doi: 10.1007/s13205-018-1535-1
Sadiq, M. B., et al. (2017). In vitro antioxidant and antimalarial activities of leaves, pods and bark extracts of Acacia nilotica (L.) Del. BMC Complementary and Alternative Medicine, 17(1), 1–8.
doi: 10.1186/s12906-017-1878-x
Flieger, J., et al. (2021). Green synthesis of silver nanoparticles using natural extracts with proven antioxidant activity. Molecules, 26(16), 4986.
pmcid: 8398508 doi: 10.3390/molecules26164986
Yadav, A., et al. (2018). In vitro antioxidant activities and GC-MS analysis of different solvent extracts of Acacia nilotica leaves. Indian Journal of Pharmaceutical Sciences, 80(5), 892–902.
doi: 10.4172/pharmaceutical-sciences.1000436
Singh, B. N., et al. (2009). Antioxidant and anti-quorum sensing activities of green pod of Acacia nilotica L. Food and Chemical Toxicology, 47(4), 778–786.
doi: 10.1016/j.fct.2009.01.009
Kalaivani, T., et al. (2011). Free radical scavenging, cytotoxic and hemolytic activities from leaves of Acacia nilotica (L.) Wild. ex. Delile subsp. indica (Benth.) Brenan. Evidence-Based Complementary and Alternative Medicine., 2011, 1–8.
doi: 10.1093/ecam/neq060
Anandalakshmi, K., Venugobal, J., & Ramasamy, V. (2016). Characterization of silver nanoparticles by green synthesis method using Pedalium murex leaf extract and their antibacterial activity. Applied Nanoscience, 6(3), 399–408.
doi: 10.1007/s13204-015-0449-z
Muhammad, W., et al. (2019). Optical, morphological and biological analysis of zinc oxide nanoparticles (ZnO NPs) using Papaver somniferum L. RSC Advances, 9(51), 29541–29548.
pmcid: 9071912 doi: 10.1039/C9RA04424H
Santhoshkumar, J., Kumar, S. V., & Rajeshkumar, S. (2017). Synthesis of zinc oxide nanoparticles using plant leaf extract against urinary tract infection pathogen. Resource-Efficient Technologies, 3(4), 459–465.
doi: 10.1016/j.reffit.2017.05.001
Goh, E. G., Xu, X., & McCormick, P. G. (2014). Effect of particle size on the UV absorbance of zinc oxide nanoparticles. Scripta Materialia, 78–79, 49–52.
doi: 10.1016/j.scriptamat.2014.01.033
Irfan, M., Munir, H., & Ismail, H. (2021). Moringa oleifera gum based silver and zinc oxide nanoparticles: Green synthesis, characterization and their antibacterial potential against MRSA. Biomaterials Research, 25(1), 17.
pmcid: 8106117 doi: 10.1186/s40824-021-00219-5
Naseer, M., et al. (2020). Green route to synthesize zinc oxide nanoparticles using leaf extracts of Cassia fistula and Melia azadarach and their antibacterial potential. Scientific Reports, 10(1), 9055.
pmcid: 7270115 doi: 10.1038/s41598-020-65949-3
Geetha, R., et al. (2013). Green synthesis of gold nanoparticles and their anticancer activity. Cancer Nanotechnology, 4(4), 91–98.
pmcid: 4451866 doi: 10.1007/s12645-013-0040-9
Alamdari, S., et al. (2020). Preparation and characterization of zinc oxide nanoparticles using leaf extract of Sambucus ebulus. Applied Sciences, 10(10), 3620.
doi: 10.3390/app10103620
Annamalai, J., & Nallamuthu, T. (2016). Green synthesis of silver nanoparticles: Characterization and determination of antibacterial potency. Applied Nanoscience, 6(2), 259–265.
doi: 10.1007/s13204-015-0426-6
Ramesh, P., et al. (2021). Green synthesis and characterization of biocompatible zinc oxide nanoparticles and evaluation of its antibacterial potential. Sensing and Bio-Sensing Research, 31, 100399.
doi: 10.1016/j.sbsr.2021.100399
Imade, E. E., et al. (2022). Green synthesis of zinc oxide nanoparticles using plantain peel extracts and the evaluation of their antibacterial activity. Scientific African, 16, e01152.
doi: 10.1016/j.sciaf.2022.e01152
Lakshmeesha, T. R., et al. (2019). Biofabrication of zinc oxide nanoparticles with Syzygium aromaticum flower buds extract and finding its novel application in controlling the growth and mycotoxins of Fusarium graminearum. Frontiers in Microbiology, 10, 1244.
pmcid: 6582371 doi: 10.3389/fmicb.2019.01244
Mayekar, J., Dhar, V., & Radha, S. (2014). Role of salt precursor in the synthesis of zinc oxide nanoparticles. International Journal of Research in Engineering and Technology, 3(3), 43–45.
doi: 10.15623/ijret.2014.0303008
Anjum, S., et al. (2021). Light tailoring: Impact of UV-C irradiation on biosynthesis, physiognomies, and clinical activities of Morus macroura-mediated monometallic (Ag and ZnO) and bimetallic (Ag–ZnO) nanoparticles. International Journal of Molecular Sciences, 22(20), 11294.
pmcid: 8540622 doi: 10.3390/ijms222011294
Shaba, E. Y., et al. (2021). A critical review of synthesis parameters affecting the properties of zinc oxide nanoparticle and its application in wastewater treatment. Applied Water Science, 11(2), 1–41.
doi: 10.1007/s13201-021-01370-z
Vijayakumar, S., et al. (2018). Green synthesis of zinc oxide nanoparticles using Atalantia monophylla leaf extracts: Characterization and antimicrobial analysis. Materials Science in Semiconductor Processing, 82, 39–45.
doi: 10.1016/j.mssp.2018.03.017
Barzinjy, A. A., & Azeez, H. H. (2020). Green synthesis and characterization of zinc oxide nanoparticles using Eucalyptus globulus Labill. leaf extract and zinc nitrate hexahydrate salt. SN Applied Sciences, 2(5), 991.
doi: 10.1007/s42452-020-2813-1
Riss, T.L., et al. (2016) Cell viability assays. Assay Guidance Manual (Internet). Bethesda (MD): Eli Lilly & Company and the National Center for Advancing Translational Sciences.
Olejnik, M., et al. (2021). Cell-biological effects of zinc oxide spheres and rods from the nano- to the microscale at sub-toxic levels. Cell Biology and Toxicology, 37(4), 573–593.
doi: 10.1007/s10565-020-09571-z
Rajeshkumar, S., et al. (2018). Biosynthesis of zinc oxide nanoparticles usingMangifera indica leaves and evaluation of their antioxidant and cytotoxic properties in lung cancer (A549) cells. Enzyme and Microbial Technology, 117, 91–95.
doi: 10.1016/j.enzmictec.2018.06.009
Wang, Y., et al. (2019). Synthesis of Zinc oxide nanoparticles from Marsdenia tenacissima inhibits the cell proliferation and induces apoptosis in laryngeal cancer cells (Hep-2). Journal of Photochemistry and Photobiology B: Biology, 201, 111624.
doi: 10.1016/j.jphotobiol.2019.111624
Alarifi, S., et al. (2013). Induction of oxidative stress, DNA damage, and apoptosis in a malignant human skin melanoma cell line after exposure to zinc oxide nanoparticles. International journal of nanomedicine, 8, 983.
pmcid: 3593769
Kalvelytė, A. V., et al. (2017). Chapter four - Adult stem cells and anticancer therapy. In J. C. Fishbein & J. M. Heilman (Eds.), Advances in Molecular toxicology (pp. 123–202). Elsevier.
Sun, L., et al. (2011). Cytotoxicity and mitochondrial damage caused by silica nanoparticles. Toxicology in Vitro, 25(8), 1619–1629.
doi: 10.1016/j.tiv.2011.06.012
De Berardis, B., et al. (2010). Exposure to ZnO nanoparticles induces oxidative stress and cytotoxicity in human colon carcinoma cells. Toxicology and Applied Pharmacology, 246(3), 116–127.
doi: 10.1016/j.taap.2010.04.012
Song, W.-J., et al. (2019). Zinc oxide nanoparticles induce autophagy and apoptosis via oxidative injury and pro-inflammatory cytokines in primary astrocyte cultures. Nanomaterials, 9(7), 1043.
pmcid: 6669602 doi: 10.3390/nano9071043
Ashraf, H., et al. (2022). Comparative evaluation of chemically and green synthesized zinc oxide nanoparticles: Their in vitro antioxidant, antimicrobial, cytotoxic and anticancer potential towards HepG2 cell line. Journal of Nanostructure in Chemistry, 13, 243–261.
doi: 10.1007/s40097-021-00460-3
Kc, B., et al. (2016). Enhanced preferential cytotoxicity through surface modification: Synthesis, characterization and comparative in vitro evaluation of TritonX-100 modified and unmodified zinc oxide nanoparticles in human breast cancer cell (MDA-MB-231). Chemistry Central Journal, 10(1), 1–10.
doi: 10.1186/s13065-016-0162-3
Pandurangan, M., Enkhtaivan, G., & Kim, D. H. (2016). Anticancer studies of synthesized ZnO nanoparticles against human cervical carcinoma cells. Journal of Photochemistry and Photobiology B: Biology, 158, 206–211.
doi: 10.1016/j.jphotobiol.2016.03.002
Tanino, R., et al. (2020). Anticancer Activity of ZnO Nanoparticles against human small-cell lung cancer in an orthotopic mouse ModelZnO nanoparticles inhibit growth of small-cell lung cancer. Molecular Cancer Therapeutics, 19(2), 502–512.
doi: 10.1158/1535-7163.MCT-19-0018
Zhang, T., et al. (2020). Anticancer effects of zinc oxide nanoparticles through altering the methylation status of histone on bladder cancer cells. International journal of nanomedicine, 15, 1457.
pmcid: 7062395 doi: 10.2147/IJN.S228839
Bartlomiejczyk, T., et al. (2013) Silver nanoparticles–allies or adversaries? Annals of Agricultural and Environmental Medicine, 20(1), 322–331.
Rasmussen, J. W., et al. (2010). Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert opinion on drug delivery, 7(9), 1063–1077.
pmcid: 2924765 doi: 10.1517/17425247.2010.502560
Wahab, R., et al. (2014). ZnO nanoparticles induced oxidative stress and apoptosis in HepG2 and MCF-7 cancer cells and their antibacterial activity. Colloids and surfaces B: Biointerfaces, 117, 267–276.
doi: 10.1016/j.colsurfb.2014.02.038
Kanipandian, N., Li, D., & Kannan, S. (2019). Induction of intrinsic apoptotic signaling pathway in A549 lung cancer cells using silver nanoparticles from Gossypium hirsutum and evaluation of in vivo toxicity. Biotechnology Reports, 23, e00339.
pmcid: 6713847 doi: 10.1016/j.btre.2019.e00339
Wong, R. S. (2011). Apoptosis in cancer: From pathogenesis to treatment. Journal of Experimental and Clinical Cancer Research, 30(1), 1–14.
doi: 10.1186/1756-9966-30-87
Asweto, C. O., et al. (2017). Cellular pathways involved in silica nanoparticles induced apoptosis: A systematic review of in vitro studies. Environmental Toxicology and Pharmacology, 56, 191–197.
doi: 10.1016/j.etap.2017.09.012
Ma, D.-D., & Yang, W.-X. (2016). Engineered nanoparticles induce cell apoptosis: Potential for cancer therapy. Oncotarget, 7(26), 40882.
pmcid: 5130051 doi: 10.18632/oncotarget.8553
Woźniak, A., et al. (2017). Size and shape-dependent cytotoxicity profile of gold nanoparticles for biomedical applications. Journal of Materials Science: Materials in Medicine, 28(6), 92.
Chu, Z., et al. (2014). Unambiguous observation of shape effects on cellular fate of nanoparticles. Scientific reports, 4(1), 4495.
pmcid: 3968459 doi: 10.1038/srep04495
Sultana, S., et al. (2015). Comparative toxicity evaluation of flower-shaped and spherical gold nanoparticles on human endothelial cells. Nanotechnology, 26(5), 055101.
doi: 10.1088/0957-4484/26/5/055101
Kim, T. H., et al. (2012). Size-dependent cellular toxicity of silver nanoparticles. Journal of Biomedical Materials Research Part A, 100(4), 1033–1043.
doi: 10.1002/jbm.a.34053
Babayevska, N., et al. (2022). ZnO size and shape effect on antibacterial activity and cytotoxicity profile. Scientific Reports, 12(1), 8148.
pmcid: 9114415 doi: 10.1038/s41598-022-12134-3
Mirhosseini, M., & Firouzabadi, F. B. (2015). Reduction of Listeria monocytogenes and Bacillus cereus in milk by zinc oxide nanoparticles. Iranian Journal of Pathology, 10(2), 97.
pmcid: 4539759
Álvarez-Chimal, R., et al. (2022). Influence of the particle size on the antibacterial activity of green synthesized zinc oxide nanoparticles using Dysphania ambrosioides extract, supported by molecular docking analysis. Arabian Journal of Chemistry, 15(6), 103804.
doi: 10.1016/j.arabjc.2022.103804
Hamed, S., & Emara, M. (2023). Antibacterial and antivirulence activities of acetate, zinc oxide nanoparticles, and vitamin C against E. coli O157:H7 and P. aeruginosa. Current Microbiology, 80(2), 57.
pmcid: 9805986 doi: 10.1007/s00284-022-03151-6
Fadwa, A. O., et al. (2021). Synergistic effects of zinc oxide nanoparticles and various antibiotics combination against Pseudomonas aeruginosa clinically isolated bacterial strains. Saudi Journal of Biological Sciences, 28(1), 928–935.
doi: 10.1016/j.sjbs.2020.09.064
Balaji, V., Jeremiah, S. S., & Baliga, P. R. (2011). Polymyxins: Antimicrobial susceptibility concerns and therapeutic options. Indian Journal of Medical Microbiology, 29(3), 230–242.
doi: 10.4103/0255-0857.83905
Ahmed, B., et al. (2019). Bacterial toxicity of biomimetic green zinc oxide nanoantibiotic: Insights into ZnONP uptake and nanocolloid–bacteria interface. Toxicology research, 8(2), 246–261.
doi: 10.1039/C8TX00267C
Ifeanyichukwu, U. L., Fayemi, O. E., & Ateba, C. N. (2020). Green synthesis of zinc oxide nanoparticles from pomegranate (Punica granatum) extracts and characterization of their antibacterial activity. Molecules, 25(19), 4521.
pmcid: 7583900 doi: 10.3390/molecules25194521
JavanBakhtDalir, S., et al. (2020). Characterization and the evaluation of antimicrobial activities of silver nanoparticles biosynthesized from Carya illinoinensis leaf extract. Heliyon, 6(3), e03624.
doi: 10.1016/j.heliyon.2020.e03624
Zhao, J., et al. (2013). Mitigation of CuO nanoparticle-induced bacterial membrane damage by dissolved organic matter. Water Research, 47(12), 4169–4178.
doi: 10.1016/j.watres.2012.11.058
Krishnamoorthy, R., et al. (2022). Antibacterial mechanisms of zinc oxide nanoparticle against bacterial food pathogens resistant to beta-lactam antibiotics. Molecules, 27(8), 2489.
pmcid: 9032754 doi: 10.3390/molecules27082489
Cai, X., et al. (2019). A natural biopreservative: Antibacterial action and mechanisms of Chinese Litsea mollis Hemsl. extract against Escherichia coli DH5α and Salmonella spp. Journal of Dairy Science, 102(11), 9663–9673.
doi: 10.3168/jds.2019-16292
Guan, G., et al. (2021). Antibacterial properties and mechanism of biopolymer-based films functionalized by CuO/ZnO nanoparticles against Escherichia coli and Staphylococcus aureus. Journal of Hazardous Materials, 402, 123542.
doi: 10.1016/j.jhazmat.2020.123542
Zhu, X., et al. (2022). Dissection of the antibacterial mechanism of zinc oxide nanoparticles with manipulable nanoscale morphologies. Journal of Hazardous Materials, 430, 128436.
doi: 10.1016/j.jhazmat.2022.128436
Hood, M. I., & Skaar, E. P. (2012). Nutritional immunity: Transition metals at the pathogen–host interface. Nature Reviews Microbiology, 10(8), 525–537.
doi: 10.1038/nrmicro2836
Kumar, A., et al. (2011). Cellular uptake and mutagenic potential of metal oxide nanoparticles in bacterial cells. Chemosphere, 83(8), 1124–1132.
doi: 10.1016/j.chemosphere.2011.01.025
Patra, J. K., & Baek, K.-H. (2017). Antibacterial activity and synergistic antibacterial potential of biosynthesized silver nanoparticles against foodborne pathogenic bacteria along with its anticandidal and antioxidant effects. Frontiers in Microbiology, 8, 167.
pmcid: 5309230 doi: 10.3389/fmicb.2017.00167
Azzam, E., & Zaki, M. (2016). Surface and antibacterial activity of synthesized nonionic surfactant assembled on metal nanoparticles. Egyptian Journal of Petroleum, 25(2), 153–159.
doi: 10.1016/j.ejpe.2015.04.005
Rajesh, S., Dharanishanthi, V., & Kanna, A. V. (2015). Antibacterial mechanism of biogenic silver nanoparticles of Lactobacillus acidophilus. Journal of Experimental Nanoscience, 10(15), 1143–1152.
doi: 10.1080/17458080.2014.985750
Cha, S.-H., et al. (2015). Shape-dependent biomimetic inhibition of enzyme by nanoparticles and their antibacterial activity. ACS Nano, 9(9), 9097–9105.
doi: 10.1021/acsnano.5b03247
Ahmed, K. B. A., Raman, T., & Veerappan, A. (2016). Future prospects of antibacterial metal nanoparticles as enzyme inhibitor. Materials Science and Engineering: C, 68, 939–947.
doi: 10.1016/j.msec.2016.06.034
Shaeer, A., et al. (2022). Looking into a highly thermostable and efficient recombinant manganese-catalase from Geobacillus thermopakistaniensis. Journal of Bioscience and Bioengineering, 133(1), 25–32.
doi: 10.1016/j.jbiosc.2021.09.012

Auteurs

Momina Riaz Dar (MR)

Department of Biotechnology, Kinnaird College for Women, 93-Jail Road, Lahore, 54000, Pakistan.

Amna Komal Khan (AK)

Department of Biotechnology, Kinnaird College for Women, 93-Jail Road, Lahore, 54000, Pakistan.

Mubashra Inam (M)

Department of Biotechnology, Kinnaird College for Women, 93-Jail Road, Lahore, 54000, Pakistan.

Christophe Hano (C)

Laboratoire de Biologie Des Ligneux Et Des Grandes Cultures, INRAE USC1328, University of Orleans, 45067CEDEX 2, Orleans, France.

Sumaira Anjum (S)

Department of Biotechnology, Kinnaird College for Women, 93-Jail Road, Lahore, 54000, Pakistan. sumaira.anjum@kinnaird.edu.pk.

Classifications MeSH