Colonization of chickens with competitive exclusion products results in extensive differences in metabolite composition in cecal digesta.
cecum
chicken
competitive exclusion
metabolome
microbiota
Journal
Poultry science
ISSN: 1525-3171
Titre abrégé: Poult Sci
Pays: England
ID NLM: 0401150
Informations de publication
Date de publication:
19 Oct 2023
19 Oct 2023
Historique:
received:
14
08
2023
revised:
07
10
2023
accepted:
16
10
2023
medline:
20
11
2023
pubmed:
20
11
2023
entrez:
19
11
2023
Statut:
aheadofprint
Résumé
The concept of competitive exclusion is well established in poultry and different products are used to suppress the multiplication of enteric pathogens in the chicken intestinal tract. While the effect has been repeatedly confirmed, the specific principles of competitive exclusion are less clear. The aim of the study was to compare metabolites in the cecal digesta of differently colonized chickens. Metabolites in the cecal contents of chickens treated with a commercial competitive exclusion product or with an experimental product consisting of 23 gut anaerobes or in control untreated chickens were determined by mass spectrometry. Extensive differences in metabolite composition among the digesta of all 3 groups of chickens were recorded. Out of 1,706 detected compounds, 495 and 279 were differently abundant in the chicks treated with a commercial or experimental competitive exclusion product in comparison to the control group, respectively. Soyasaponins, betaine, carnitine, glutamate, tyramine, phenylacetaldehyde, or 3-methyladenine were more abundant in the digesta of control chicks while 4-oxododecanedioic acid, nucleotides, dipeptides, amino acids (except for glutamate), and vitamins were enriched in the digesta of chickens colonized by competitive exclusion products. Metabolites enriched in the digesta of control chicks can be classified as of plant feed origin released in the digesta by degradative activities of the chicken. Some of these molecules disappeared from the digesta of chicks colonized by complex microbiota due to them being metabolized. Instead, nucleotides, amino acids, and vitamins increased in the digesta of colonized chicks as a consequence of the additional digestive potential brought to the cecum by microbiota from competitive exclusion products. It is therefore possible to affect metabolite profiles in the chicken cecum by its colonization with selected bacterial species.
Identifiants
pubmed: 37980752
pii: S0032-5791(23)00736-8
doi: 10.1016/j.psj.2023.103217
pmc: PMC10684392
pii:
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
103217Informations de copyright
Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.
Références
Foods. 2023 Apr 24;12(9):
pubmed: 37174307
Front Microbiol. 2023 Mar 16;14:1138903
pubmed: 37007491
BMC Genomics. 2018 Jul 31;19(1):561
pubmed: 30064352
Br Poult Sci. 1973 Nov;14(6):627-30
pubmed: 4759990
Appl Environ Microbiol. 2022 Dec 20;88(24):e0180922
pubmed: 36468876
Plants (Basel). 2020 Mar 31;9(4):
pubmed: 32244406
Br Poult Sci. 2018 Aug;59(4):470-476
pubmed: 29856245
Vet Res Commun. 2013 Dec;37(4):303-10
pubmed: 24006087
J Anim Sci Biotechnol. 2022 Mar 5;13(1):34
pubmed: 35246239
Sci Rep. 2020 Mar 25;10(1):5382
pubmed: 32214106
PLoS One. 2019 Mar 6;14(3):e0212446
pubmed: 30840648
Animals (Basel). 2019 May 16;9(5):
pubmed: 31100910
Front Microbiol. 2021 May 28;12:683905
pubmed: 34122394
Infect Immun. 2011 Jul;79(7):2755-63
pubmed: 21555397
Poult Sci. 2023 Apr;102(4):102529
pubmed: 36805398
J Cereal Sci. 2007;46(1):93-95
pubmed: 19030121
Front Vet Sci. 2020 Mar 04;7:123
pubmed: 32195276
Foods. 2018 Mar 29;7(4):
pubmed: 29596314
Insects. 2023 Jan 19;14(2):
pubmed: 36835675
Metabolomics. 2020 Apr 3;16(4):46
pubmed: 32246267
Microb Pathog. 2019 Jul;132:325-334
pubmed: 31082529
Front Microbiol. 2016 Jun 17;7:957
pubmed: 27379083
Molecules. 2019 Mar 21;24(6):
pubmed: 30901847
Metabolites. 2021 Jul 28;11(8):
pubmed: 34436428
Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2017 Apr;34(4):632-640
pubmed: 27827563
J Cell Biochem. 2004 Feb 1;91(2):250-7
pubmed: 14743385
Vet Immunol Immunopathol. 2004 Aug;100(3-4):151-64
pubmed: 15207453
J Anal Methods Chem. 2016;2016:1813581
pubmed: 26981317
Amino Acids. 2019 Aug;51(8):1153-1165
pubmed: 31197570
J Exp Bot. 2021 Jun 22;72(13):5038-5050
pubmed: 33884424
Appl Environ Microbiol. 2015 Dec 28;82(5):1569-76
pubmed: 26712550
Nucleic Acids Res. 2021 Jul 2;49(W1):W388-W396
pubmed: 34019663
Nutrients. 2022 Aug 24;14(17):
pubmed: 36079731
Br Poult Sci. 2023 Jun;64(3):384-397
pubmed: 36607291
Poult Sci. 2018 Oct 1;97(10):3540-3549
pubmed: 30085304
Vet Microbiol. 2013 May 31;164(1-2):85-92
pubmed: 23434185
PLoS One. 2016 Sep 29;11(9):e0163932
pubmed: 27685470
Ecotoxicol Environ Saf. 2023 Jul 1;259:115056
pubmed: 37229871
J Chromatogr B Analyt Technol Biomed Life Sci. 2017 Mar 15;1047:115-123
pubmed: 27423778
Vaccines (Basel). 2022 Jan 22;10(2):
pubmed: 35214631
Microorganisms. 2019 Nov 21;7(12):
pubmed: 31766558
PLoS One. 2014 Dec 12;9(12):e115142
pubmed: 25501990
Plant Foods Hum Nutr. 2004 Spring;59(2):55-61
pubmed: 15678752
Nat Biotechnol. 2016 Aug 9;34(8):828-837
pubmed: 27504778
Microbiome. 2017 Aug 3;5(1):91
pubmed: 28768551
Poult Sci. 2022 Nov;101(11):102106
pubmed: 36088818
Appl Environ Microbiol. 2006 Jan;72(1):946-9
pubmed: 16391141
Toxicon. 2018 Oct;153:62-71
pubmed: 30171931
Microorganisms. 2022 Jan 20;10(2):
pubmed: 35208674
Enzyme Microb Technol. 2000 Mar 1;26(5-6):459-465
pubmed: 10713221
Int J Food Microbiol. 1997 Apr 15;35(3):223-30
pubmed: 9105931
PLoS One. 2013 Dec 31;8(12):e84290
pubmed: 24391931