Ergolide mediates anti-cancer effects on metastatic uveal melanoma cells and modulates their cellular and extracellular vesicle proteomes.

BRCA2 and CDKN1A Interacting Protein Chitinase Domain Containing 1 Metastatic uveal melanoma ergolide extracellular vesicles

Journal

Open research Europe
ISSN: 2732-5121
Titre abrégé: Open Res Eur
Pays: Belgium
ID NLM: 9918230081006676

Informations de publication

Date de publication:
2023
Historique:
accepted: 10 11 2023
medline: 20 11 2023
pubmed: 20 11 2023
entrez: 20 11 2023
Statut: epublish

Résumé

Uveal melanoma is a poor prognosis cancer. Ergolide, a sesquiterpene lactone isolated from Ergolide bioactivity was screened via long-term proliferation assay in UM/MUM cells and in zebrafish MUM xenograft models. Mass spectrometry profiled proteins modulated by ergolide within whole cell or extracellular vesicle (EVs) lysates of the OMM2.5 MUM cell line. Protein expression was analyzed by immunoblots and correlation analyses to UM patient survival used The Cancer Genome Atlas (TCGA) data. Ergolide treatment resulted in significant, dose-dependent reductions (48.5 to 99.9%; Ergolide is a novel, promising anti-proliferative agent for UM/MUM. Proteomic profiling of OMM2.5 cellular/EV lysates identified candidate pathways elucidating the action of ergolide and putative biomarkers of UM, that require further examination. The most common form of adult eye cancer is uveal melanoma (UM). Once UM cancer cells spread to organs in the rest of the body, metastatic UM (MUM), there is a poor prognosis for patients with only one approved drug treatment. Hence, it is vital to better understand the cellular and extracellular proteins that regulate UM pathology in order to uncover biomarkers of disease and therapeutic targets. In this original study, we demonstrate a compound called ergolide is capable of severely reducing the metabolic activity and growth of UM cancer cells, grown as isolated monolayers. Ergolide was also able to reduce the growth of human MUM cells growing as tumors in transplanted zebrafish larvae. We identify that ergolide alters specific proteins found in the human UM cells. These proteins once analyzed in detail offer opportunities to understand how new treatment strategies can be developed for UM.

Sections du résumé

Background UNASSIGNED
Uveal melanoma is a poor prognosis cancer. Ergolide, a sesquiterpene lactone isolated from
Methods UNASSIGNED
Ergolide bioactivity was screened via long-term proliferation assay in UM/MUM cells and in zebrafish MUM xenograft models. Mass spectrometry profiled proteins modulated by ergolide within whole cell or extracellular vesicle (EVs) lysates of the OMM2.5 MUM cell line. Protein expression was analyzed by immunoblots and correlation analyses to UM patient survival used The Cancer Genome Atlas (TCGA) data.
Results UNASSIGNED
Ergolide treatment resulted in significant, dose-dependent reductions (48.5 to 99.9%;
Conclusions UNASSIGNED
Ergolide is a novel, promising anti-proliferative agent for UM/MUM. Proteomic profiling of OMM2.5 cellular/EV lysates identified candidate pathways elucidating the action of ergolide and putative biomarkers of UM, that require further examination.
The most common form of adult eye cancer is uveal melanoma (UM). Once UM cancer cells spread to organs in the rest of the body, metastatic UM (MUM), there is a poor prognosis for patients with only one approved drug treatment. Hence, it is vital to better understand the cellular and extracellular proteins that regulate UM pathology in order to uncover biomarkers of disease and therapeutic targets. In this original study, we demonstrate a compound called ergolide is capable of severely reducing the metabolic activity and growth of UM cancer cells, grown as isolated monolayers. Ergolide was also able to reduce the growth of human MUM cells growing as tumors in transplanted zebrafish larvae. We identify that ergolide alters specific proteins found in the human UM cells. These proteins once analyzed in detail offer opportunities to understand how new treatment strategies can be developed for UM.

Autres résumés

Type: plain-language-summary (eng)
The most common form of adult eye cancer is uveal melanoma (UM). Once UM cancer cells spread to organs in the rest of the body, metastatic UM (MUM), there is a poor prognosis for patients with only one approved drug treatment. Hence, it is vital to better understand the cellular and extracellular proteins that regulate UM pathology in order to uncover biomarkers of disease and therapeutic targets. In this original study, we demonstrate a compound called ergolide is capable of severely reducing the metabolic activity and growth of UM cancer cells, grown as isolated monolayers. Ergolide was also able to reduce the growth of human MUM cells growing as tumors in transplanted zebrafish larvae. We identify that ergolide alters specific proteins found in the human UM cells. These proteins once analyzed in detail offer opportunities to understand how new treatment strategies can be developed for UM.

Identifiants

pubmed: 37981907
doi: 10.12688/openreseurope.15973.2
pmc: PMC10654492
doi:

Types de publication

Journal Article

Langues

eng

Pagination

88

Informations de copyright

Copyright: © 2023 Sundaramurthi H et al.

Déclaration de conflit d'intérêts

No competing interests were disclosed.

Références

Front Oncol. 2021 Feb 08;10:606906
pubmed: 33628730
Mol Cell Proteomics. 2018 Dec;17(12):2534-2545
pubmed: 30385480
J Extracell Vesicles. 2017 May 26;6(1):1321455
pubmed: 28717418
Int J Mol Sci. 2022 Aug 19;23(16):
pubmed: 36012642
Invest Ophthalmol Vis Sci. 2003 Mar;44(3):1008-11
pubmed: 12601021
Front Immunol. 2020 May 19;11:951
pubmed: 32508832
J Pharm Pharmacol. 2007 Apr;59(4):561-6
pubmed: 17430640
Bioinformatics. 2009 Apr 15;25(8):1091-3
pubmed: 19237447
Bioinformatics. 2004 Jun 12;20(9):1453-4
pubmed: 14871861
Proteomics. 2015 Aug;15(15):2597-601
pubmed: 25921073
Cancer Immunol Res. 2014 Sep;2(9):823-30
pubmed: 25187272
Front Immunol. 2021 Mar 31;12:658315
pubmed: 33868304
Invest Ophthalmol Vis Sci. 2007 Nov;48(11):4890-6
pubmed: 17962435
Int J Oncol. 2013 Dec;43(6):1925-34
pubmed: 24101097
J Pharm Pharmacol. 2005 Dec;57(12):1591-7
pubmed: 16354403
Mol Cell Proteomics. 2022 Sep;21(9):100273
pubmed: 35918030
Thorac Cancer. 2021 Sep;12(17):2324-2338
pubmed: 34297484
Ocul Oncol Pathol. 2020 Dec;6(6):381-387
pubmed: 33447587
Nat Rev Cancer. 2018 Jan;18(1):51-63
pubmed: 29192214
Cureus. 2022 Jun 21;14(6):e26146
pubmed: 35891820
Cells. 2021 Apr 13;10(4):
pubmed: 33924468
J Ethnopharmacol. 2014 Jun 11;154(2):286-310
pubmed: 24754913
Int J Mol Sci. 2021 Jan 05;22(1):
pubmed: 33466316
Breast Cancer Res. 2017 Oct 18;19(1):115
pubmed: 29047390
Mol Cell Proteomics. 2010 Jun;9(6):1085-99
pubmed: 20124223
Invest Ophthalmol Vis Sci. 2010 Apr;51(4):1811-6
pubmed: 19892878
Cancers (Basel). 2019 Apr 12;11(4):
pubmed: 31013837
Bioinformatics. 2013 Mar 1;29(5):661-3
pubmed: 23325622
Cytokine Growth Factor Rev. 2022 Apr;64:71-83
pubmed: 34836750
Contemp Oncol (Pozn). 2018 Mar;22(1A):23-32
pubmed: 29628790
Cancers (Basel). 2020 Sep 30;12(10):
pubmed: 33008022
EBioMedicine. 2021 May;67:103365
pubmed: 33971402
Semin Cancer Biol. 2021 Jun;71:65-85
pubmed: 32450140
Cell Death Dis. 2020 Sep 17;11(9):774
pubmed: 32943608
Nat Biotechnol. 2008 Dec;26(12):1367-72
pubmed: 19029910
Anticancer Res. 2012 Jul;32(7):2591-8
pubmed: 22753717
Front Immunol. 2019 Dec 04;10:2752
pubmed: 31866994
Cell Rep. 2018 Jul 31;24(5):1316-1329
pubmed: 30067985
J Proteome Res. 2011 Apr 1;10(4):1794-805
pubmed: 21254760
Am J Cancer Res. 2019 Dec 01;9(12):2760-2773
pubmed: 31911860
Nucleic Acids Res. 2020 Dec 16;48(22):12817-12832
pubmed: 33245766
Cancers (Basel). 2020 Sep 25;12(10):
pubmed: 32992823
Exp Eye Res. 2012 Jul;100:26-31
pubmed: 22569040
Cancers (Basel). 2020 Oct 11;12(10):
pubmed: 33050649
Genome Res. 2003 Nov;13(11):2498-504
pubmed: 14597658
Carcinogenesis. 2015 Sep;36(9):1008-18
pubmed: 26054723
Cancer Discov. 2012 May;2(5):401-4
pubmed: 22588877
Nat Rev Immunol. 2003 Oct;3(10):791-800
pubmed: 14502271
Nat Rev Clin Oncol. 2023 Feb;20(2):99-115
pubmed: 36600005
Invest Ophthalmol Vis Sci. 1991 Dec;32(13):3198-208
pubmed: 1748551
J Nat Prod. 2006 Apr;69(4):531-5
pubmed: 16643020
N Engl J Med. 2021 Sep 23;385(13):1196-1206
pubmed: 34551229
Clin Exp Metastasis. 1997 Sep;15(5):509-18
pubmed: 9247253
J Biol Chem. 2012 Jul 20;287(30):25530-40
pubmed: 22669972
J Endocrinol. 2004 Jul;182(1):1-9
pubmed: 15225126
Oncology. 2008;75(3-4):127-33
pubmed: 18791328
Nat Protoc. 2016 Dec;11(12):2301-2319
pubmed: 27809316
PLoS One. 2018 Jun 4;13(6):e0197702
pubmed: 29864117
Proteomics Clin Appl. 2015 Apr;9(3-4):358-67
pubmed: 25684126
J Immunol. 2000 Jul 15;165(2):710-5
pubmed: 10878343
Eye (Lond). 2013 Feb;27(2):217-23
pubmed: 23238448
Front Oncol. 2022 Apr 11;12:828112
pubmed: 35480119
J Mol Biol. 2021 May 28;433(11):166747
pubmed: 33310018
Cancers (Basel). 2019 Aug 02;11(8):
pubmed: 31382450
Medicine (Baltimore). 2020 Sep 18;99(38):e22091
pubmed: 32957329
J Innate Immun. 2012;4(5-6):454-62
pubmed: 22302072
Methods Mol Biol. 2021;2174:143-170
pubmed: 32813249
Planta Med. 1998 Dec;64(8):752-4
pubmed: 9933993
J Extracell Vesicles. 2018 Nov 23;7(1):1535750
pubmed: 30637094
Mol Cell Proteomics. 2014 Sep;13(9):2513-26
pubmed: 24942700
Cancers (Basel). 2020 Jul 29;12(8):
pubmed: 32751097
Molecules. 2010 Mar 10;15(3):1562-77
pubmed: 20336001
Pathol Res Pract. 2022 Sep;237:154038
pubmed: 35932496
Onco Targets Ther. 2018 Apr 11;11:2063-2073
pubmed: 29695914
Life Sci. 2004 Jul 2;75(7):841-56
pubmed: 15183076
Int J Mol Sci. 2012 Nov 23;13(12):15653-67
pubmed: 23443086
Front Immunol. 2020 Nov 25;11:609948
pubmed: 33324425
Front Cell Dev Biol. 2021 Nov 05;9:777441
pubmed: 34805181
Cell Death Dis. 2020 Mar 30;11(3):210
pubmed: 32231206
Br J Pharmacol. 2001 Jun;133(4):503-12
pubmed: 11399667
J Ethnopharmacol. 2020 May 10;253:112504
pubmed: 31904493
Nat Methods. 2016 Sep;13(9):731-40
pubmed: 27348712
Prog Retin Eye Res. 2020 Mar;75:100800
pubmed: 31563544
Br J Ophthalmol. 2017 Jan;101(1):38-44
pubmed: 27574175
J Extracell Vesicles. 2021 Dec;10(14):e12175
pubmed: 34918479
Mol Cancer Res. 2022 Apr 1;20(4):661-669
pubmed: 34992145
Trans Am Ophthalmol Soc. 2016 Aug;114:T5
pubmed: 28018010
Oncogene. 2007 Sep 20;26(43):6253-60
pubmed: 17452982
Cell Death Dis. 2021 Oct 1;12(10):894
pubmed: 34599143
Genes Dev. 2017 Jul 15;31(14):1439-1455
pubmed: 28827399
Cancers (Basel). 2022 Feb 03;14(3):
pubmed: 35159049
Dig Dis Sci. 2017 Feb;62(2):387-395
pubmed: 27995408
Comput Appl Biosci. 1996 Aug;12(4):357-8
pubmed: 8902363
Am J Pathol. 2020 Jun;190(6):1175-1187
pubmed: 32201259

Auteurs

Husvinee Sundaramurthi (H)

UCD Conway Institute, University College Dublin, Dublin, Leinster, Ireland.
UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Leinster, Ireland.
Systems Biology Ireland, University College Dublin, Dublin, Leinster, Ireland.
UCD School of Medicine, University College Dublin, Dublin, Leinster, Ireland.

Valentina Tonelotto (V)

UCD Conway Institute, University College Dublin, Dublin, Leinster, Ireland.
UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Leinster, Ireland.
Xenopat S.L., Business Bioincubator, Bellvitge Health Science Campus, Barcelona, 08907 L'Hospitalet de Llobregat, Spain.

Kieran Wynne (K)

Systems Biology Ireland, University College Dublin, Dublin, Leinster, Ireland.

Fiona O'Connell (F)

Department of Surgery, Trinity Translational Medicine Institute, Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland.

Eve O'Reilly (E)

UCD Conway Institute, University College Dublin, Dublin, Leinster, Ireland.
UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Leinster, Ireland.

Marcel Costa-Garcia (M)

Medical Oncology Department, Catalan Institute of Cancer (ICO), IDIBELL-OncoBell, Barcelona, Spain.

Csenger Kovácsházi (C)

Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.
Pharmahungary Group, Szeged, Hungary.

Agnes Kittel (A)

Institute of Experimental Medicine, Budapest, Hungary.

Simone Marcone (S)

Department of Surgery, Trinity Translational Medicine Institute, Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland.

Alfonso Blanco (A)

UCD Conway Institute, University College Dublin, Dublin, Leinster, Ireland.

Eva Pallinger (E)

Department of Genetics and Immunobiology, Semmelweis University, Budapest, Hungary.

Szabolcs Hambalkó (S)

Pharmahungary Group, Szeged, Hungary.

Jose Maria Piulats Rodriguez (JM)

Medical Oncology Department, Catalan Institute of Cancer (ICO), IDIBELL-OncoBell, Barcelona, Spain.

Péter Ferdinandy (P)

Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.
Pharmahungary Group, Szeged, Hungary.

Jacintha O'Sullivan (J)

Department of Surgery, Trinity Translational Medicine Institute, Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland.

David Matallanas (D)

Systems Biology Ireland, University College Dublin, Dublin, Leinster, Ireland.
UCD School of Medicine, University College Dublin, Dublin, Leinster, Ireland.

Lasse D Jensen (LD)

BioReperia AB, Linköping, Sweden.

Zoltán Giricz (Z)

Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.
Pharmahungary Group, Szeged, Hungary.

Breandán N Kennedy (BN)

UCD Conway Institute, University College Dublin, Dublin, Leinster, Ireland.
UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Leinster, Ireland.

Classifications MeSH