Distribution, quantification, and characterization of substance P enteric neurons in the submucosal and myenteric plexuses of the porcine colon.
Cholinergic and nitrergic transmission
Excitatory motor neurons
Inhibitory motor neurons
Interneurons
Secretomotor neurons
Journal
Cell and tissue research
ISSN: 1432-0878
Titre abrégé: Cell Tissue Res
Pays: Germany
ID NLM: 0417625
Informations de publication
Date de publication:
20 Nov 2023
20 Nov 2023
Historique:
received:
02
08
2023
accepted:
30
10
2023
medline:
20
11
2023
pubmed:
20
11
2023
entrez:
20
11
2023
Statut:
aheadofprint
Résumé
The pig is an important translational model for studying intestinal physiology and disorders for its many homologies with humans, including the organization of the enteric nervous system (ENS), the major regulator of gastrointestinal functions. This study focused on the quantification and neurochemical characterization of substance P (SP) neurons in the pig ascending (AC) and descending colon (DC) in wholemount preparations of the inner submucosal plexus (ISP), outer submucosal plexus (OSP), and myenteric plexus (MP). We used antibodies for the pan-neuronal marker HuCD, and choline acetyltransferase (ChAT) and neuronal nitric oxide synthase (nNOS), markers for excitatory and inhibitory transmitters, for multiple labeling immunofluorescence and high-resolution confocal microscopy. The highest density of SP immunoreactive (IR) neurons was in the ISP (222/mm
Identifiants
pubmed: 37982872
doi: 10.1007/s00441-023-03842-x
pii: 10.1007/s00441-023-03842-x
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : National Institute of Health
ID : DK41301
Organisme : National Institute of Health
ID : 1OT2OD24899
Informations de copyright
© 2023. The Author(s).
Références
Bassols A, Costa C, Eckersall PD, Osada J, Sabrià J, Tibau J (2014) The pig as an animal model for human pathologies: a proteomics perspective. Proteomics Clin Appl 8:715–731
pubmed: 25092613
doi: 10.1002/prca.201300099
Blumenthal JA, Onorato JJ, Carey HV (1998) Muscarinic inhibition of substance P induced ion secretion in piglet jejunum. Can J Physiol Pharmacol 76:169–175
doi: 10.1139/y98-009
Bornstein JC, Furness JB, Costa M (1989) An electrophysiological comparison of substance P-immunoreactive neurons with other neurons in the guinea-pig submucous plexus. J Auton Nerv Syst 26:113–120
pubmed: 2470805
doi: 10.1016/0165-1838(89)90159-8
Brehmer A, Croner R, Dimmler A, Papadopoulos T, Schrödl F, Neuhuber W (2004) Immunohistochemical characterization of putative primary afferent (sensory) myenteric neurons in human small intestine. Auton Neurosci 112:49–59
doi: 10.1016/j.autneu.2004.03.005
Brookes SGH (2001) Classes of enteric nerve cells in the guinea-pig small intestine. Anat Rec 262:58–70
pubmed: 11146429
doi: 10.1002/1097-0185(20010101)262:1<58::AID-AR1011>3.0.CO;2-V
Brookes SJ, Steele PA, Costa M (1991) Calretinin immunoreactivity in cholinergic motor neurones, interneurones and vasomotor neurones in the guinea-pig small intestine. Cell Tissue Res 263:471–481
pubmed: 1715238
doi: 10.1007/BF00327280
Brown DR, Timmermans J-P (2004) Lessons from the porcine enteric nervous system. Neurogastroenterol Motil 16:50–54
pubmed: 15066005
doi: 10.1111/j.1743-3150.2004.00475.x
Brown DR, Parsons AM, O’Grady SM (1992) Substance P produces sodium and bicarbonate secretion in porcine jejunal mucosa through an action on enteric neurons. J Pharmacol Exp Ther 261:1206–1212
pubmed: 1376357
Bulc M, Palus K, Dabrowski M, Claka J (2019) Hyperglycaemia-induced downregulation in expression of nNOS intramural neurons of the small intestine in the pig. Int J Mol Sci 20:1681
pubmed: 30987291
pmcid: 6480956
doi: 10.3390/ijms20071681
De Fontgalland D, Wattchow DA, Costa M, Brookes SJH (2008) Immunohistochemical characterization of the innervation of human colonic mesenteric and submucosal blood vessels. Neurogastroenterol Motil 20:1212–1226
pubmed: 18643894
doi: 10.1111/j.1365-2982.2008.01150.x
Filzmayer AK, Elfers K, Michel K, Buhner S, Zeller F, Demir IE, Theisen J, Schemann M, Mazzuoli-Weber G (2020) Compression and stretch sensitive submucosal neurons of the porcine and human colon. Sci Rep 10:13791
pubmed: 32796868
pmcid: 7428018
doi: 10.1038/s41598-020-70216-6
Frieling T, Weber E, Schemann M (2000) Inflammatory mediators influencing submucosal secretory reflexes. Ann N Y Acad Sci 915:98–101
pubmed: 11193607
doi: 10.1111/j.1749-6632.2000.tb05229.x
Furness JB (2000) Types of neurons in the enteric nervous system. J Auton Nerv Syst 81:87–96
pubmed: 10869706
doi: 10.1016/S0165-1838(00)00127-2
Furness JB (2012) The enteric nervous system and neurogastroenterology. Nat Rev Gastroenterol Hepatol 9:286–294
pubmed: 22392290
doi: 10.1038/nrgastro.2012.32
Furness JB, Kunze WA, Bertrand PP, Clerc N, Bornstein JC (1998) Intrinsic primary afferent neurons of the intestine. Prog Neurobiol 54:1–18
pubmed: 9460790
doi: 10.1016/S0301-0082(97)00051-8
Furness JB, Callaghan BP, Rivera LR, Cho HJ (2014) The enteric nervous system and gastrointestinal innervation: integrated local and central control. Adv Exp Med Biol 817:39–71
pubmed: 24997029
doi: 10.1007/978-1-4939-0897-4_3
Gonkowski S (2013) Substance P as a neuronal factor in the enteric nervous system of the porcine descending colon in physiological conditions and during selected pathogenic processes. BioFactors 39:542–551
pubmed: 24155273
doi: 10.1002/biof.1097
Gonzalez LM, Moeser AJ, Blikslager A (2015) Porcine models of digestive disease: the future of large animal translational research. Transl Res 166:12–27
pubmed: 25655839
pmcid: 4458388
doi: 10.1016/j.trsl.2015.01.004
Hens J, Schrödl F, Brehmer A, Adriaensen D, Neuhuber W, Scheuermann DW, Schemann M, Timmermans JP (2000) Mucosal projections of enteric neurons in the porcine small intestine. J Comp Neurol 421:429–436
pubmed: 10813797
doi: 10.1002/(SICI)1096-9861(20000605)421:3<429::AID-CNE10>3.0.CO;2-9
Hens J, Gajda M, Scheuermann DW, Adriaensen D, Timmermans J-P (2002) The longitudinal smooth muscle layer of the pig small intestine is innervated by both myenteric and submucous neurons. Histoch Cell Biol 117:481–492
doi: 10.1007/s00418-002-0406-2
Ho A, Lievore A, Patierno S, Kohlmeier SE, Tonini M, Sternini C (2003) Neurochemically distinct classes of myenteric neurons express the µ-opioid receptor in the guinea pig ileum. J Comp Neurol 458:404–411
pubmed: 12619074
doi: 10.1002/cne.10606
Holzer P, Holzer-Petsche U (1997a) Tachykinins in the gut. Part I. Expression, release and motor function. Pharmacol Ther 73:173–217
pubmed: 9175155
doi: 10.1016/S0163-7258(96)00195-7
Holzer P, Holzer-Petsche U (1997b) Tachykinins in the gut. Part II. Roles in neural excitation, secretion and inflammation. Pharmacol Ther 73:219–263
pubmed: 9175156
doi: 10.1016/S0163-7258(96)00196-9
Holzer P, Holzer-Petsche U (2001) Tachykinin receptors in the gut: physiological and pathological implications. Curr Opin Pharmacol 1:583–590
pubmed: 11757813
doi: 10.1016/S1471-4892(01)00100-X
Humenick A, Chen AN, Wattchow DA, Zagorodnyuk VP, Dinning PG, Spencer NJ, Costa M, Brooks SJH (2021) Characterization of putative interneurons in the myenteric plexus of human colon. Neurogastroenterol Motil 33:e13964
pubmed: 32839997
doi: 10.1111/nmo.13964
Keränen U, Vanhatalo S, Kiviluoto T, Kivilaakso E, Soinila, (1995) Co-localization of NADPH diaphorase reactivity and vasoactive intestinal polypeptide in human colon. J Auton Nerv Syst 54:177–183
pubmed: 7490419
doi: 10.1016/0165-1838(95)00010-U
Koon HW, Pothoulakis C (2006) Immunomodulatory properties of substance P the gastrointestinal system as a model. Ann N Y Acad Sci 1088:23–40
pubmed: 17192554
doi: 10.1196/annals.1366.024
Lecci A, Capriati A, Altamura M, Maggi CA (2006) Tachykinins and tachykinin receptors in the gut, with special reference to NK2 receptors in human. Auton Neurosci 126–127:323–349
Li ZS, Furness JB (1998) Immunohistochemical localisation of cholinergic markers in putative intrinsic primary afferent neurons of the guinea-pig small intestine. Cell Tissue Res 294:35–43
pubmed: 9724454
doi: 10.1007/s004410051154
Lin Z, Gao N, Hu HZ, Liu S, Gao C, Kim G, Ren J, Xia Y, Peck OC, Wood JD (2002) Immunoreactivity of Hu proteins facilitates identification of myenteric neurons in guinea-pig small intestine. Neurogastroenterol Motil 14:197–204
pubmed: 11975720
doi: 10.1046/j.1365-2982.2002.00317.x
Litten-Brown JC, Corson AM, Clarke L (2010) Porcine models for the metabolic syndrome, digestive and bone disorders: a general overview. Animal 4:899–920
pubmed: 22444262
doi: 10.1017/S1751731110000200
Lomax AE, Furness JB (2000) Neurochemical classification of enteric neurons in the guinea-pig distal colon. Cell Tissue Res 302:59–72
pubmed: 11079716
doi: 10.1007/s004410000260
Mantyh CR, Vigna SR, Maggio JE, Mantyh PW, Bollinger RR, Pappas TN (1994) Substance P binding sites on intestinal lymphoid aggregates and blood vessels in inflammatory bowel disease correspond to authentic NK-1 receptors. Neurosci Lett 178:255–259
pubmed: 7529913
doi: 10.1016/0304-3940(94)90772-2
Mazzoni M, Caremoli F, Cabanillas L, de Los SJ, Million M, Larauche M, Clavenzani P, De Giorgio R, Sternini C (2021) Quantitative analysis of enteric neurons containing choline acetyltransferase and nitric oxide synthase immunoreactivities in the submucosal and myenteric plexuses of the porcine colon. Cell Tiss Res 383:645–654
doi: 10.1007/s00441-020-03286-7
Mazzuoli G, Mazzoni M, Albanese V, Clavenzani P, Lalatta-Costerbosa G, Lucchi ML, Furness JB, Chiocchetti R (2007) Morphology and neurochemistry of descending and ascending myenteric plexus neurons of sheep ileum. Anat Rec 290:1480–1491
doi: 10.1002/ar.20615
Mazzuoli G, Lucherini MC, Russo D, Clavenzani P, Chiocchetti R (2008) Intrinsic neuronal control of the pyloric sphincter of the lamb. J Chem Neuroanat 36:98–106
pubmed: 18571894
doi: 10.1016/j.jchemneu.2008.05.002
Miller ER, Ullrey DE (1987) The pig as a model for human nutrition. Annu Rev Nutr 7:361–382
pubmed: 3300739
doi: 10.1146/annurev.nu.07.070187.002045
Mitsui R (2011) Immunohistochemical analysis of substance P-containing neurons in rat small intestine. Cell Tiss Res 343:331–341
doi: 10.1007/s00441-010-1080-7
Murphy EM, Defontgalland D, Costa M, Brookes SJ, Wattchow DA (2007) Quantification of subclasses of human colonic myenteric neurons by immunoreactivity to Hu, choline acetyltransferase and nitric oxide synthase. Neurogastroenterol Motil 19:126–134
pubmed: 17244167
doi: 10.1111/j.1365-2982.2006.00843.x
Neunlist M, Schemann M (1997) Projections and neurochemical coding of myenteric neurons innervating the mucosa of the guinea pig proximal colon. Cell Tissue Res 287:119–125
pubmed: 9011387
doi: 10.1007/s004410050737
Neunlist M, Dobreva G, Schemann M (1999) Characteristics of mucosally projecting myenteric neurones in the guinea-pig proximal colon. J Physiol 517:533–546
pubmed: 10332100
pmcid: 2269343
doi: 10.1111/j.1469-7793.1999.0533t.x
Pang X, Hua X, Yang Q, Ding D, Che C, Cui L, Jia W, Bucheli P, Zhao L (2007) Inter-species transplantation of gut microbiota from human to pigs. ISME J 1:156–162
pubmed: 18043625
doi: 10.1038/ismej.2007.23
Petto C, Gäbel G, Pfannkuche H (2015) Architecture and chemical coding of the inner and outer submucous plexus in the colon of piglets. PLoS ONE 10:e0133350
pubmed: 26230272
pmcid: 4521800
doi: 10.1371/journal.pone.0133350
Pfannkuche H, Mauksch A, Gabel G (2011) Modulation of electrogenic transport processes in the porcine proximal colon by enteric neurotransmitters. J Anim Physiol Anim Nutr (berl) 96:482–493
pubmed: 21623932
doi: 10.1111/j.1439-0396.2011.01168.x
Phillips RJ, Hargrave SL, Rhodes BS, Zopf DA, Powley TL (2004) Quantification of neurons in the myenteric plexus: an evaluation of putative pan-neuronal markers. J Neurosci Methods 133:99–107
pubmed: 14757350
doi: 10.1016/j.jneumeth.2003.10.004
Pimont S, Bruley Des Varannes S, Le Neel JC, Aubert P, Galmiche JP, Neunlist M (2003) Neurochemical coding of myenteric neurones in the human gastric fundus. Neurogastroenterol Motil 15:655–662
pubmed: 14651601
doi: 10.1046/j.1350-1925.2003.00442.x
Riegler M, Castagliuolo I, So PT, Lotz M, Wang C, Wlk M, Sogukoglu T, Cosentini E, Bischof G, Hamilton G, Teleky B, Wenzl E, Matthews JB, Pothoulakis C (1999) Effects of substance P on human colonic mucosa in vitro. Am J Physiol 276:G1473-1483
pubmed: 10362651
Riegler M, Castagliuolo I, Wlk M, Pothoulakis C (2000) Substance P causes a chloride-dependent short-circuit current response in rabbit colonic mucosa in vitro. Scand J Gastroenterol 34:1203–1211
doi: 10.1080/003655299750024715
Sanders KM, Ward SM (2019) Nitric oxide and its role as a non-adrenergic, non-cholinergic inhibitory neurotransmitter in the gastrointestinal tract. Brit J Pharmacol 176:212–227
doi: 10.1111/bph.14459
Schmidt P, Poulsen SS, Rasmussen TN, Bersani M, Holst JJ (1991) Substance P and neurokinin A are codistributed and colocalized in the porcine gastrointestinal tract. Peptides 12:963–973
pubmed: 1724799
doi: 10.1016/0196-9781(91)90045-Q
Shimizu Y, Matsuyama H, Shiina T, Takewaki T, Furness JB (2008) Tachykinins and their functions in the gastrointestinal tract. Cell Mol Life Sci 65:295–311
pubmed: 17952369
doi: 10.1007/s00018-007-7148-1
Song ZM, Brookes SJH, Steele PA, Costa M (1992) Projections and pathways of submucous neurons to the mucosa of the guinea-pig small intestine. Cell Tissue Res 269:87–98
pubmed: 1384975
doi: 10.1007/BF00384729
Steele PA, Brookes SJ, Costa M (1991) Immunohistochemical identification of cholinergic neurons in the myenteric plexus of guinea-pig small intestine. Neuroscience 45:227–239
pubmed: 1721693
doi: 10.1016/0306-4522(91)90119-9
Sternini A, Anderson K, Frantz G, Krause EJ, Brecha N (1989) Expression of Substance P/Neurokinin A-encoding preprotachykinin messenger ribonucleic acids in the rat Enteric Nervous System. Gastroenterology 97:348–356
pubmed: 2472998
doi: 10.1016/0016-5085(89)90070-X
Timmermans JP, Scheuermann DW, Stach W, Adriaensen D, De Groodt-Lasseel MH, Polak JM (1989) Neuromedin U-immunoreactivity in the nervous system of the small intestine of the pig and its coexistence with substance P and CGRP. Cell Tissue Res 258:331–337
pubmed: 2479480
doi: 10.1007/BF00239453
Timmermans JP, Scheuermann DW, Stach W, Adriaensen D, De Groodt-Lasseel MH (1990) Distinct distribution of CGRP-, enkephalin-, galanin-, neuromedin U-, neuropeptide Y-, somatostatin-, substance P-, VIP- and serotonin-containing neurons in the two submucosal ganglionic neural networks of the porcine small intestine. Cell Tissue Res 260:367–379
pubmed: 1694106
doi: 10.1007/BF00318639
Timmermans JP, Scheuermann DW, Stach W, Adriaensen D, de Groodt-Lesseal MHA (1992) Functional morphology of the enteric nervous system with special reference to large mammals. Eur J Morphol 30:113–122
pubmed: 1457247
Timmermans JP, Adriaensen D, Cornelissen W, Scheuermann DW (1997) Structural organization and neuropeptide distribution in the mammalian enteric nervous system, with special attention to those components involved in mucosal reflexes. Comp Biochem Physiol A Physiol 118:331–340
pubmed: 9366065
doi: 10.1016/S0300-9629(96)00314-3
Timmermans JP, Hens J, Adriaensen D (2001) Outer submucous plexus: an intrinsic nerve network involved in both secretory and motility processes in the intestine of large mammals and humans. Anat Rec 262:71–78
pubmed: 11146430
doi: 10.1002/1097-0185(20010101)262:1<71::AID-AR1012>3.0.CO;2-A
Tonini M, Spelta V, De Ponti F, De Giorgio R, D’Agostino G, Stanghellini V, Corinaldesi R, Sternini C, Crema F (2001) Tachykinin-dependent and independent components of peristalsis in the guinea pig isolated distal colon. Gastroenterology 120:938–945
pubmed: 11231947
doi: 10.1053/gast.2001.22526
Yuan PQ, Bellier JP, Li T, Kwaan MR, Kimura H (2021) Taché Y (2021) Intrinsic cholinergic innervation in the human sigmoid colon revealed using CLARITY, three-dimensional (3D) imaging, and a novel anti-human peripheral choline acetyltransferase (hpChAT) antiserum. Neurogastroenterol Motil 33:e14030
pubmed: 33174295
doi: 10.1111/nmo.14030
Zhao D, Kuhnt-Moore S, Zeng H, Pan A, Wu JS, Simeonidis S, Moyer M, Pothoulakis C (2002) Substance P-stimulated interleukin- 8 expression in human colonic epithelial cells involves Rho family small GTPases. Biochem J 368:665–672
pubmed: 12169092
pmcid: 1222994
doi: 10.1042/bj20020950