Dormancy and double-activation strategy for construction of high-performance mixed-matrix membranes.
CO2 Capture
Mixed Matrix Membranes
Quasi-Semi-Continuous Mass Transfer Channels
Ultrahigh ZIF-8 Loadings
Journal
Angewandte Chemie (International ed. in English)
ISSN: 1521-3773
Titre abrégé: Angew Chem Int Ed Engl
Pays: Germany
ID NLM: 0370543
Informations de publication
Date de publication:
20 Nov 2023
20 Nov 2023
Historique:
received:
09
10
2023
pubmed:
20
11
2023
medline:
20
11
2023
entrez:
20
11
2023
Statut:
aheadofprint
Résumé
Mixed-matrix membranes (MMMs) have the potential for energy-efficient gas separation by matching the superior mass transfer and anti-plasticization properties of the fillers with processability and scaling up features of the polymers. However, construction of high-performance MMMs has been prohibited due to low filler-loading and the existence of interfacial defects. Here, high MOF-loaded, i.e., 55 wt %, MMMs are developed by a 'dormancy and double-activation' (DDA) strategy. High MOF precursor concentration suppresses crystallization in the membrane casting solution, realizing molecular level mixing of all components. Then, the polymeric matrix was formed with uniform encapsulation of MOF nutrients. Subsequently, double-activation was employed to induce MOF crystallization: the alkali promotes MOFs nucleation to harvest small porous nanocrystals while excessive ligands activate the metal ions to enhance the MOFs conversion. As such, quasi-semi-continuous mass transfer channels can be formed in the MMMs by the connected MOFs nanocrystals to boost the gas permeability. The optimized MMM shows significantly ameliorated CO
Identifiants
pubmed: 37983657
doi: 10.1002/anie.202315167
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e202315167Subventions
Organisme : National Natural Science Foundation of China
ID : 22125801
Organisme : National Natural Science Foundation of China
ID : 21975005
Organisme : Australian Research Council
ID : DP180103861
Organisme : Australian Research Council
ID : IH170100009
Informations de copyright
© 2023 Wiley-VCH GmbH.
Références
D. Welsby, J. Price, S. Pye, P. Ekins, Nature 2021, 597, 230-234.
S. J. Zeng, X. P. Zhang, L. Bai, X. C. Zhang, H. Wang, J. J. Wang, D. Bao, M. D. Li, X. Y. Liu, S. J. Zhang, Chem. Rev. 2017, 117, 9625-9673;
X. Jiang, S. W. Li, L. Shao, Energy Environ. Sci. 2017, 10, 1339-1344;
A. Car, C. Stropnik, W. Yave, K.-V. Peinemann, Adv. Funct. Mater. 2008, 18, 2815-2823.
M. Jahandar Lashaki, S. Khiavi, A. Sayari, Chem. Soc. Rev. 2019, 48, 3320-3405;
A. Baltar, D. Gómez-Díaz, J. M. Navaza, A. Rumbo, AIChE J. 2019, 66, e16770.
D. S. Sholl, R. P. Lively, Nature 2016, 532, 435;
H. Z. Yu, X. Y. Qiu, N. Moreno, Z. W. Ma, V. M. Calo, S. P. Nunes, K.-V. Peinemann, Angew. Chem. Int. Ed. 2015, 54, 13937-13941;
S. Li, S. M. Chang, M. J. Yin, W. H. Zhang, W. S. Sun, A. Shiue, Q. F. An, J. Membr. Sci. 2022, 652;
W. S. Sun, M. J. Yin, W. H. Zhang, S. Li, N. X. Wang, Q. F. An, ACS Sustainable Chem. Eng. 2021, 9, 10167-10175.
T. C. Merkel, H. Q. Lin, X. T. Wei, R. Baker, J. Membr. Sci. 2010, 359, 126-139;
Z.-X. Wang, W.-H. Zhang, G. Yu, M.-J. Yin, S. Li, Q.-F. An, Chem. Eng. Sci. 2023, 282, 119354.
H. B. Park, J. Kamcev, L. M. Robeson, M. Elimelech, B. D. Freeman, Science 2017, 356, eaab0530;
M. L. Jue, V. Breedveld, R. P. Lively, J. Membr. Sci. 2017, 530, 33-41;
B. Satilmis, M. Lanč, A. Fuoco, C. Rizzuto, E. Tocci, P. Bernardo, G. Clarizia, E. Esposito, M. Monteleone, M. Dendisová, K. Friess, P. M. Budd, J. C. Jansen, J. Membr. Sci. 2018, 555, 483-496;
Z.-X. Wang, W.-S. Sun, W.-H. Zhang, S. Li, M.-J. Yin, Q.-F. An, Sep. Purif. Technol. 2023, 322, 124348.
J. Dechnik, J. Gascon, C. J. Doonan, C. Janiak, C. J. Sumby, Angew. Chem. Int. Ed. 2017, 56, 9292-9310;
X. Y. Tan, S. Robijns, R. Thür, Q. Ke, N. D. Witte, A. Lamaire, Y. Li, I. Aslam, D. V. Havere, T. Donckels, T. V. Assche, V. V. Speybroeck, M. Dusselier, I. Vankelecom, Science 2022, 378, 1189-1194.
H. Furukawa, K. E. Cordova, M. O′Keeffe, O. M. Yaghi, Science 2013, 341, 1230444;
Q. H. Qian, P. A. Asinger, M. J. Lee, G. Han, K. M. Rodriguez, S. Lin, F. M. Benedetti, A. X. Wu, W. S. Chi, Z. P. Smith, Chem. Rev. 2020, 120, 8161-8266;
S. Li, W. Y. Han, Q. F. An, K. T. Yong, M. J. Yin, Adv. Funct. Mater. 2023, 33, 2303447;
W. H. Zhang, M. J. Yin, Q. Zhao, C. G. Jin, N. X. Wang, S. Ji, C. L. Ritt, M. Elimelech, Q. F. An, Nat. Nanotechnol. 2021, 16, 337-343.
N. C. Su, D. T. Sun, C. M. Beavers, D. K. Britt, W. L. Queen, J. J. Urban, Energy Environ. Sci. 2016, 9, 922-931;
C. E. Li, A. H. Qi, Y. Ling, Y. Tao, Y.-B. Zhang, T. Li, Sci. Adv. 2023, 9, eadf5087.
N. C. Su, Z. P. Smith, B. D. Freeman, J. J. Urban, Chem. Mater. 2015, 27, 2421-2429;
C. Li, J. Liu, K. Zhang, S. Zhang, Y. Lee, T. Li, Angew. Chem. Int. Ed. 2021, 60, 14138-14145;
T. Rodenas, I. Luz, G. Prieto, B. Seoane, H. Miro, A. Corma, F. Kapteijn, I. X. F. X. Llabres, J. Gascon, Nat. Mater. 2015, 14, 48-55;
S. J. Datta, A. Mayoral, N. M. S. Bettahalli, P. M. Bhatt, M. Karunakaran, I. D. Carja, D. Fan, P. G. M. Mileo, R. Semino, G. Maurin, O. Terasaki, M. Eddaoudi, Science 2022, 376, 1080-1087.
J. Dechnik, C. J. Sumby, C. Janiak, Cryst. Growth Des. 2017, 17, 4467-4488;
T. H. Bae, J. S. Lee, W. L. Qiu, W. J. Koros, C. W. Jones, S. Nair, Angew. Chem. Int. Ed. 2010, 49, 9863-9866;
B. Ghalei, K. Sakurai, Y. Kinoshita, K. Wakimoto, A. P. Isfahani, Q. L. Song, K. Doitomi, S. Furukawa, H. Hirao, H. Kusuda, S. Kitagawa, E. Sivaniah, Nat. Energy 2017, 2, 17086.
L. Ma, F. Svec, Y. Q. Lv, T. W. Tan, J. Mater. Chem. A 2019, 7, 20293-20301;
S. Li, Y.-J. Sun, Z.-X. Wang, C.-G. Jin, M.-J. Yin, Q.-F. An, Small 2023, 19, 2208177.
K. Shen, L. Zhang, X. D. Chen, L. M. Liu, D. L. Zhang, Y. Han, J. Y. Chen, J. Long, R. Luque, Y. W. Li, B. L. Chen, Science 2018, 359, 206-210.
J. Troyano, A. Carné-Sánchez, C. Avci, I. Imaz, D. Maspoch, Chem. Soc. Rev. 2019, 48, 5534-5546.
X. C. Huang, Y. Y. Lin, J. P. Zhang, X. M. Chen, Angew. Chem. Int. Ed. 2006, 45, 1557-1559;
H. Sun, F. K. Wang, X. T. Li, J. Caro, H. Meng, N. X. Wang, Q.-F. An, Angew. Chem. Int. Ed. 2023, 62, e202300262.
A. Carné, C. Carbonell, I. Imaz, D. Maspoch, Chem. Soc. Rev. 2011, 40, 291-305;
L. Ge, W. Zhou, V. Rudolph, Z. H. Zhu, J. Mater. Chem. A 2013, 1, 6350-6358.
D. H. Liu, L. Xiang, H. Chang, K. Chen, C. Q. Wang, Y. C. Pan, Y. S. Li, Z. Y. Jiang, Chem. Eng. Sci. 2019, 204, 151-160.
W. Han, M. J. Yin, W. H. Zhang, Z. J. Liu, N. Wang, K. T. Yong, Q. F. An, Adv. Sci. 2021, 8, e2102594.
C. Zhang, R. P. Lively, K. Zhang, J. R. Johnson, O. Karvan, W. J. Koros, J. Phys. Chem. Lett. 2012, 3, 2130-2134.
T. X. Yang, T.-S. Chung, J. Mater. Chem. A 2013, 1, 6081;
L. Xiang, L. Q. Sheng, C. Q. Wang, L. X. Zhang, Y. C. Pan, Y. S. Li, Adv. Mater. 2017, 29, 1606999.
L. Martínez-Izquierdo, C. Téllez, J. Coronas, J. Mater. Chem. A 2022, 10, 18822-18833;
W.-S. Sun, M.-J. Yin, W.-H. Zhang, S. Li, N. X. Wang, Q.-F. An, Green Energy & Environ. 2023, 8, 1389-1397.
D. Olasz, J. Lendvai, A. Szallas, G. Gulyas, N. Q. Chinh, Micromachines 2020, 11, 1023.