Preliminary evaluation for ultrasound-guided targeted prostate biopsy using a portable surgical robot: Ex vivo results.

medical robotics needle insertion robot registration robot-targeted puncture ultrasound guide

Journal

The international journal of medical robotics + computer assisted surgery : MRCAS
ISSN: 1478-596X
Titre abrégé: Int J Med Robot
Pays: England
ID NLM: 101250764

Informations de publication

Date de publication:
20 Nov 2023
Historique:
revised: 17 10 2023
received: 21 09 2023
accepted: 26 10 2023
medline: 21 11 2023
pubmed: 21 11 2023
entrez: 20 11 2023
Statut: aheadofprint

Résumé

Robotic systems are increasingly used to enhance clinical outcomes in prostate intervention. To evaluate the clinical value of the proposed portable robot, the robot-assisted and robot-targeted punctures were validated experimentally. The robot registration utilising the electromagnetic tracker achieves coordinate transformation from the ultrasound (US) image to the robot. Subsequently, Transrectal ultrasound (TRUS)-guided phantom trials were conducted for robot-assisted, free-hand, and robot-targeted punctures. The accuracy of robot registration was 0.95 mm, and the accuracy of robot-assisted, free-hand, and robot-targeted punctures was 2.38 ± 0.64 mm, 3.11 ± 0.72 mm, and 3.29 ± 0.83 mm sequentially. The registration method has been successfully applied to robot-targeted puncture. Current results indicate that the accuracy of robot-targeted puncture is slightly inferior to that of manual operations. Moreover, in manual operation, robot-assisted puncture improves the accuracy of free-hand puncture. Accuracy superior to 3.5 mm demonstrates the clinical applicability of both robot-assisted and robot-targeted punctures.

Sections du résumé

BACKGROUND BACKGROUND
Robotic systems are increasingly used to enhance clinical outcomes in prostate intervention. To evaluate the clinical value of the proposed portable robot, the robot-assisted and robot-targeted punctures were validated experimentally.
METHOD METHODS
The robot registration utilising the electromagnetic tracker achieves coordinate transformation from the ultrasound (US) image to the robot. Subsequently, Transrectal ultrasound (TRUS)-guided phantom trials were conducted for robot-assisted, free-hand, and robot-targeted punctures.
RESULTS RESULTS
The accuracy of robot registration was 0.95 mm, and the accuracy of robot-assisted, free-hand, and robot-targeted punctures was 2.38 ± 0.64 mm, 3.11 ± 0.72 mm, and 3.29 ± 0.83 mm sequentially.
CONCLUSION CONCLUSIONS
The registration method has been successfully applied to robot-targeted puncture. Current results indicate that the accuracy of robot-targeted puncture is slightly inferior to that of manual operations. Moreover, in manual operation, robot-assisted puncture improves the accuracy of free-hand puncture. Accuracy superior to 3.5 mm demonstrates the clinical applicability of both robot-assisted and robot-targeted punctures.

Identifiants

pubmed: 37984069
doi: 10.1002/rcs.2597
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e2597

Subventions

Organisme : National Key Research and Development Program of China
ID : 2018YFE0206900

Informations de copyright

© 2023 John Wiley & Sons Ltd.

Références

Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J Clin. 2021;71(3):209-249. https://doi.org/10.3322/caac.21660
Siegel RL, Miller KD, Wagle NS, Jemal A Cancer statistics, 2023. Ca Cancer J Clin. 2023;73(1):17-48. https://doi.org/10.3322/caac.21763
Wong MC, Goggins WB, Wang HH, et al. Global incidence and mortality for prostate cancer: analysis of temporal patterns and trends in 36 countries. Eur Urol. 2016;70(5):862-874. https://doi.org/10.1016/j.eururo.2016.05.043
Onur R, Littrup PJ, Pontes JE, Bianco FJ, Jr. Contemporary impact of transrectal ultrasound lesions for prostate cancer detection. J urology. 2004;172(2):512-514. https://doi.org/10.1097/01.ju.0000131621.61732.6b
Han M, Chang D, Kim C, et al. Geometric evaluation of systematic transrectal ultrasound guided prostate biopsy. J urology. 2012;188(6):2404-2409. https://doi.org/10.1016/j.juro.2012.07.107
Wen M, Zhou Q, Tao B, Shcherbakov P, Xu Y, Zhang X. Short-term and long-term memory self-attention network for segmentation of tumours in 3D medical images. CAAI Trans Intell Technol. 2023:1-14. https://doi.org/10.1049/cit2.12179
Moreira P, van de Steeg G, Krabben T, et al. The miriam robot: a novel robotic system for mr-guided needle insertion in the prostate. Journal of medical robotics research. 2017;2(04):1750006. https://doi.org/10.1142/s2424905x17500064
Dai X, Zhang Y, Jiang J, Li B Image-guided robots for low dose rate prostate brachytherapy: perspectives on safety in design and use. Int J Med Robotics Comput Assisted Surg. 2021;17(3):e2239. https://doi.org/10.1002/rcs.2239
Krieger A, Song S-E, Cho NB, et al. Development and evaluation of an actuated MRI-compatible robotic system for MRI-guided prostate intervention. IEEE/ASME Trans Mechatronics. 2011;18(1):273-284. https://doi.org/10.1109/tmech.2011.2163523
Stoianovici D, Kim C, Srimathveeravalli G, et al. MRI-safe robot for endorectal prostate biopsy. IEEE/ASME Trans Mechatronics. 2013;19(4):1289-1299. https://doi.org/10.1109/tmech.2013.2279775
Kronreif G, Fürst M, Kettenbach J, Figl M Hanel R Robotic guidance for percutaneous interventions. Adv Robot. 2003;17(6):541-560. https://doi.org/10.1163/15685530360675532
Korb W, Kornfeld M, Birkfellner W, et al. Risk analysis and safety assessment in surgical robotics: a case study on a biopsy robot. Minim Invasive Ther Allied Technol. 2005;14(1):23-31. https://doi.org/10.1080/13645700510010827
Fichtinger G, Fiene JP, Kennedy CW, et al. Robotic assistance for ultrasound-guided prostate brachytherapy. Med Image Anal. 2008;12(5):535-545. https://doi.org/10.1016/j.media.2008.06.002
Kettenbach J, Kara L, Toporek G, Fuerst M, Kronreif G A robotic needle-positioning and guidance system for CT-guided puncture: ex vivo results. Minim Invasive Ther Allied Technol. 2014;23(5):271-278. https://doi.org/10.3109/13645706.2014.928641
Stoianovici D, Song D, Petrisor D, et al. “MRI Stealth” robot for prostate interventions. Minim Invasive Ther Allied Technol. 2007;16(4):241-248. https://doi.org/10.1080/13645700701520735
Patriciu A, Petrisor D, Muntener M, Mazilu D, Schar M, Stoianovici D. Automatic brachytherapy seed placement under MRI guidance. IEEE (Inst Electr Electron Eng) Trans Biomed Eng. 2007;54(8):1499-1506. https://doi.org/10.1109/tbme.2007.900816
Muntener M, Patriciu A, Petrisor D, et al. Transperineal prostate intervention: robot for fully automated MR imaging-system description and proof of principle in a canine model. Radiology. 2008;247(2):543-549. https://doi.org/10.1148/radiol.2472070737
Stoianovici D, Kim C, Petrisor D, et al. MR safe robot, FDA clearance, safety and feasibility of prostate biopsy clinical trial. IEEE/ASME Trans Mechatronics. 2016;22(1):115-126. https://doi.org/10.1109/tmech.2016.2618362
Eslami S, Shang W, Li G, et al. In-bore prostate transperineal interventions with an MRI-guided parallel manipulator: system development and preliminary evaluation. Int J Med Robotics Comput Assisted Surg. 2016;12(2):199-213. https://doi.org/10.1002/rcs.1671
Patel NA, Li G, Shang W, et al. System integration and preliminary clinical evaluation of a robotic system for MRI-guided transperineal prostate biopsy. Journal of medical robotics research. 2019;4(02):1950001. https://doi.org/10.1142/s2424905x19500016
Shang W, Fischer GS A high accuracy multi-image registration method for tracking MRI-guided robotsMedical Imaging 2012 Image-Guided Proced Robotic Interventions, Model. Vol 8316; 2012:581-588.
Su H, Shang W, Cole G, et al. Piezoelectrically actuated robotic system for MRI-guided prostate percutaneous therapy. IEEE/ASME Trans Mechatronics. 2014;20(4):1920-1932. https://doi.org/10.1109/tmech.2014.2359413
Chen Y, Squires A, Seifabadi R, et al. Robotic system for MRI-guided focal laser ablation in the prostate. IEEE/ASME Trans Mechatronics. 2016;22(1):107-114. https://doi.org/10.1109/tmech.2016.2611570
Chen Y, Xu S, Squires A, et al. MRI-guided robotically assisted focal laser ablation of the prostate using canine cadavers. IEEE (Inst Electr Electron Eng) Trans Biomed Eng. 2017;65(7):1434-1442. https://doi.org/10.1109/tbme.2017.2756907
Maris B, Tenga C, Vicario R, et al. Toward autonomous robotic prostate biopsy: a pilot study. Int J Comput Assist Radiol Surg. 2021;16(8):1393-1401. https://doi.org/10.1007/s11548-021-02437-7
Maris B, Fiazza M-C, De Piccoli M, et al. Preclinical validation of a semi-autonomous robot for transperineal prostate biopsy. IEEE Transactions on Medical Robotics and Bionics. 2022;4(2):311-322. https://doi.org/10.1109/tmrb.2022.3159737
Hungr N, Troccaz J, Zemiti N, Tripodi N Design of an ultrasound-guided robotic brachytherapy needle-insertion system. In: 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE; 2009:250-253.
Hungr N, Baumann M, Long J-A, Troccaz J A 3-D ultrasound robotic prostate brachytherapy system with prostate motion tracking. IEEE Trans Robot. 2012;28(6):1382-1397. https://doi.org/10.1109/tro.2012.2203051
Soni NJ, Franco-Sadud R, Schnobrich D, et al. Ultrasound guidance for lumbar puncture. Neurology Clin Pract. 2016;6(4):358-368. https://doi.org/10.1212/cpj.0000000000000265
Jiang W, Wu D, Dong W, et al. Design and validation of a non-parasitic 2R1T parallel hand-held prostate biopsy robot with remote center of motion. J Mech Robot. 2024;16(5):051009. https://doi.org/10.1115/1.4062793
Ploussard G, Epstein JI, Montironi R, et al. The contemporary concept of significant versus insignificant prostate cancer. Eur Urol. 2011;60(2):291-303. https://doi.org/10.1016/j.eururo.2011.05.006
Dai X, Zhang Y, Jiang J, Zhang S A needle deflection model with operating condition optimization for corrective force-based needle guidance during transrectal prostate brachytherapy. Int J Med Robotics Comput Assisted Surg. 2022;18(3):e2388. https://doi.org/10.1002/rcs.2388

Auteurs

Wenhe Jiang (W)

State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China.

Yongzhuo Gao (Y)

State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China.

Mingwei Wen (M)

Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.

Zhichao Ye (Z)

Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

Huageng Liang (H)

Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

Dongmei Wu (D)

State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China.

Wei Dong (W)

State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China.

Classifications MeSH