Longitudinal MRI in the context of in utero surgery for open spina bifida: A descriptive study.
accessibility
fetal surgery
magnetic resonance imaging
open spina bifida
protocols
sequences
Journal
Acta obstetricia et gynecologica Scandinavica
ISSN: 1600-0412
Titre abrégé: Acta Obstet Gynecol Scand
Pays: United States
ID NLM: 0370343
Informations de publication
Date de publication:
20 Nov 2023
20 Nov 2023
Historique:
revised:
17
09
2023
received:
16
06
2023
accepted:
17
10
2023
medline:
21
11
2023
pubmed:
21
11
2023
entrez:
20
11
2023
Statut:
aheadofprint
Résumé
Fetal surgery for open spina bifida (OSB) requires comprehensive preoperative assessment using imaging for appropriate patient selection and to evaluate postoperative efficacy and complications. We explored patient access and conduct of fetal magnetic resonance imaging (MRI) for prenatal assessment of OSB patients eligible for fetal surgery. We compared imaging acquisition and reporting to the International Society of Ultrasound in Obstetrics and Gynecology MRI performance guidelines. We surveyed access to fetal MRI for OSB in referring fetal medicine units (FMUs) in the UK and Ireland, and two NHS England specialist commissioned fetal surgery centers (FSCs) at University College London Hospital, and University Hospitals KU Leuven Belgium. To study MRI acquisition protocols, we retrospectively analyzed fetal MRI images before and after fetal surgery for OSB. MRI for fetal OSB was accessible with appropriate specialists available to supervise, perform, and report scans. The average time to arrange a fetal MRI appointment from request was 4 ± 3 days (range, 0-10), the average scan time available was 37 ± 16 min (range, 20-80 min), with 15 ± 11 min (range, 0-30 min) extra time to repeat sequences as required. Specific MRI acquisition protocols, and MRI reporting templates were available in only 32% and 18% of units, respectively. Satisfactory T2-weighted (T2W) brain imaging acquired in three orthogonal planes was achieved preoperatively in all centers, and 6 weeks postoperatively in 96% of FSCs and 78% of referring FMUs. However, for T2W spine image acquisition referring FMUs were less able to provide three orthogonal planes presurgery (98% FSC vs. 50% FMU, p < 0.001), and 6 weeks post-surgery (100% FSC vs. 48% FMU, p < 0.001). Other standard imaging recommendations such as T1-weighted (T1W), gradient echo (GE) or echoplanar fetal brain and spine imaging in one or two orthogonal planes were more likely available in FSCs compared to FMUs pre- and post-surgery (p < 0.001). There was timely access to supervised MRI for OSB fetal surgery assessment. However, the provision of images of the fetal brain and spine in sufficient orthogonal planes, which are required for determining eligibility and to determine the reversal of hindbrain herniation after fetal surgery, were less frequently acquired. Our evidence suggests the need for specific guidance in relation to fetal MRI for OSB. We propose an example guidance for MRI acquisition and reporting.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Wellcome Trust
ID : 203148/Z/16/Z
Pays : United Kingdom
Organisme : Wellcome Trust
ID : 203145Z/16/Z
Pays : United Kingdom
Organisme : Wellcome Trust
ID : WT101957
Pays : United Kingdom
Investigateurs
David Atkinson
(D)
Foteini Emmanouella Bredaki
(FE)
Joanna Chappell
(J)
Luc De Catte
(L)
Roland Devlieger
(R)
Michael Ebner
(M)
Lucas Fidon
(L)
Trevor Gaunt
(T)
Giles S Kendall
(GS)
Sebastien Ourselin
(S)
Kelly Pegoretti Baruteau
(KP)
Adalina Sacco
(A)
Magdalena Sokolska
(M)
Tom Vercauteren
(T)
Informations de copyright
© 2023 The Authors. Acta Obstetricia et Gynecologica Scandinavica published by John Wiley & Sons Ltd on behalf of Nordic Federation of Societies of Obstetrics and Gynecology (NFOG).
Références
Adzick NS, Thom EA, Spong CY, et al. A randomised trial of prenatal versus postnatal repair of myelomeningocele. N Engl J Med. 2011;364:993-1004.
Kunpalin Y, Richter J, Mufti N, et al. Cranial findings detected by second trimester ultrasound in fetuses with myelomeningocele: a systematic review. BJOG. 2021;128:366-374.
Mufti N, Sacco A, Aertsen M, et al. What brain abnormalities can magnetic resonance imaging detect in foetal and early neonatal spina bifida: a systematic review. Neuroradiology. 2022;64:233-245.
Araujo Junior E, Nakano ML, et al. Comparison between 2D ultrasonography and magnetic resonance imaging for assessing brain and spine parameters in fetuses with spina bifida. Arch Gynecol Obstet. 2013;287:845-849.
Saleem SN, Said AH, Abdel-Raouf M, et al. Fetal MRI in the evaluation of fetuses referred for sonographically suspected neural tube defects (NTDs): impact on diagnosis and management decision. Neuroradiology. 2009;51:761-772.
Levine D, Trop I, Mehta TS, Barnes PD. MR imaging appearance of fetal Cereberal ventricular morphology. Radiology. 2002;223:652-660.
Simon EM, Goldstein RB, Coakley FV, et al. Fast MR imaging of fetal CNS anomalies in utero. AJNR Am J Neuroradiol. 2000;21:1688-1698.
Aertsen M, Diogo MC, Dymarkowski S, Deprest J, Prayer D. Fetal MRI for dummies: what the fetal medicine specialist should know about acquisitions and sequences. Prenat Diagn. 2020;40:6-17.
Mangels KJ, Tulipan N, Tsao LY, Alarcon J, Bruner JP. Fetal MRI in the evaluation of intrauterine myelomeningocele. Pediatr Neurosurg. 2000;32:124-131.
Griffiths PD, Bradburn M, Campbell MJ, et al. Use of MRI in the diagnosis of fetal brain abnormalities in utero (MERIDIAN): a multicentre, prospective cohort study. Lancet. 2017;389:538-546.
Hino-Shishikura A, Niwa T, Aida N, Okabe T, Nagaoka T, Shibasaki J. Periventricular nodular heterotopia is related to severity of the hindbrain deformity in Chiari II malformation. Pediatr Radiol. 2012;42:1212-1217.
Sutton LNA, Bilaniuk LT, Johnson MP, Cromblehome TM, Flake AW. Improvement in hinbrain herniation demonstrate by serial fetal magnetic imaging following fetal surgery for myelomeningocele. JAMA. 1999;282:1826-1831.
Rethmann C, Scheer I, Meuli M, Mazzone L, Moehrlen U, Kellenberger CJ. Evolution of posterior fossa and brain morphology after in utero repair of open neural tube defects assessed by MRI. Eur Radiol. 2017;27:4571-4580.
Aertsen M, Verduyckt J, De Keyzer F, et al. Reliability of MR imaging-based posterior fossa and brain stem measurements in open spinal dysraphism in the era of fetal surgery. AJNR Am J Neuroradiol. 2019;40:191-198.
Grant RA, Heuer GG, Carrion GM, et al. Morphometric analysis of posterior fossa after in utero myelomeningocele repair. J Neurosurg Pediatr. 2011;7:362-368.
Didier RAM-SJS, Oliver ER, DeBari SE, et al. Incidence and concordance of suspected intraventricular haemorrhage (IVH) on fetal us and MRI in open spinal dysraphism with postnatal follow-up. Pediatr Radiol. 2019;49:1-245.
Nasiadko CS, Meuli M, Moehrlen U, Ochsenbein N. Fetal brain morphology after in utero repair of open neural tube defects. Neuroradiology. Springer, Verlag. 2014;56(Suppl 1):104.
Nagaraj UD, Bierbrauer KS, Zhang B, Peiro JL, Kline-Fath BM. Hindbrain herniation in Chiari II malformation on fetal and postnatal MRI. AJNR Am J Neuroradiol. 2017;38:1031-1036.
Malinger G, Lev D, Lerman-Sagie T. Is fetal magnetic resonance imaging superior to neurosonography for detection of brain anomalies? Ultrasound Obstet Gynecol. 2002;20:317-321.
Prayer D, Malinger G, De Catte L, et al. ISUOG practice guidelines (updated): performance of fetal magnetic resonance imaging. Ultrasound Obstet Gynecol. 2023;61:278-287.
Ebner M, Wang G, Li W, et al. An automated framework for localization, segmentation and super-resolution reconstruction of fetal brain MRI. Neuroimage. 2020;206:116324.
Davidson JR, Uus A, Matthew J, et al. Fetal body MRI and its application to fetal and neonatal treatment: an illustrative review. Lancet Child Adolesc Health. 2021;5:447-458.
Whitby E, Offiah AC, Shelmerdine SC, et al. Current state of perinatal postmortem magnetic resonance imaging: European Society of Paediatric Radiology questionnaire-based survey and recommendations. Pediatr Radiol. 2021;51:792-799.
Sacco A, Ushakov F, Thompson D, et al. Fetal surgery for open spina bifida. Obstet Gynaecol. 2019;21:271-282.
Doel T, Shakir DI, Pratt R, et al. GIFT-cloud: a data sharing and collaboration platform for medical imaging research. Comput Methods Programs Biomed. 2017;139:181-190.
D'addario VP, Del Bianco A, Di Naro E, Tartagni G, Miniello G, Serio G. The clivus-supraocciput angle: a useful measurement to evaluate the shape and size of the fetal posterior fossa and to diagnose Chiari II malformation. Ultrasound Obstet Gynecol. 2001;18:146-149.
Tsai T, Bookstein FL, Levey E, Kinsman SL. Chairi-II malformation: a biometric analysis. Eur J Pediatr Surg. 2002;12:S12-S18.
Resta MGP, D'Addario V, Florio C, et al. Magnetic resonance imaging in pregnancy: study of fetal cerebral malformations. Ultrasound Obstet Gynecol. 1994;4:7-20.
Griffiths PD, Jarvis D, McQuillan H, Williams F, Paley M, Armitage P. MRI of the foetal brain using a rapid 3D steady-state sequence. Br J Radiol. 2013;86:20130168.
Zizka J, Elias P, Hodik K, et al. Liver, meconium, haemorrhage: the value of T1-weighted images in fetal MRI. Pediatr Radiol. 2006;36:792-801.
Putbrese B, Kennedy A. Findings and differential diagnosis of fetal intracranial haemorrhage and fetal ischaemic brain injury: what is the role of fetal MRI? Br J Radiol. 2017;90:20160253.
Sanapo L, Whitehead MT, Bulas DI, et al. Intracranial hemorrhage: role of fetal MRI. Prenat Diagn. 2017;37:827-836.
Nemec SFNU, Brugger PC, Wadhawan I, Prayer D. Skeletal development on fetal magnetic resonance imaging. Top Mag Reson Imaging. 2011;22:101-106.
Robinson AJ, Blaser S, Vladimirov A, Drossman D, Chitayat D, Ryan G. Foetal “black bone” MRI: utility in assessment of the foetal spine. Br J Radiol. 2015;88:20140496.
Bammer R. Basic principles of diffusion-weighted imaging. Eur Jf Radiol. 2003;45:169-184.
Kim DH, Chung S, Vigneron DB, Barkovich AJ, Glenn OA. Diffusion-weighted imaging of the fetal brain in vivo. Magn Reson Med. 2008;59:216-220.
Schneider MM, Berman JI, Baumer FM, et al. Normative apparent diffusion coefficient values in the developing fetal brain. AJNR Am J Neuroradiol. 2009;30:1799-1803.
Prayer D, Kasprian G, Krampl E, et al. MRI of normal fetal brain development. Eur J Radiol. 2006;57:199-216.
Kostovic I, Judas M, Rados M, Hrabac P. Laminar organisation of the human fetal cerebrum revealed by histochemical markers and magnetic resonance imaging. Cereb Cortex. 2002;12:536-544.
Diogo MC, Prayer D, Gruber GM, et al. Echo-planar FLAIR sequence improves subplate visualization in fetal MRI of the brain. Radiology. 2019;292:159-169.
Woitek R, Prayer D, Weber M, et al. Fetal diffusion tensor quantification of brainstem pathology in Chiari II malformation. Eur Radiol. 2016;26:1274-1283.
Jakab A, Schwartz E, Kasprian G, et al. Fetal functional imaging portrays heterogeneous development of emerging human brain networks. Front Hum Neurosci. 2014;8:852.
Thomason ME, Scheinost D, Manning JH, et al. Weak functional connectivity in the human fetal brain prior to preterm birth. Sci Rep. 2017;7:39286.
Kasprian G, Brugger PC, Weber M, et al. In utero tractography of fetal white matter development. Neuroimage. 2008;43:213-224.
Mitter C, Prayer D, Brugger PC, Weber M, Kasprian G. In vivo tractography of fetal association fibers. PloS One. 2015;10:e0119536.