A Machine Learning Model Based on microRNAs for the Diagnosis of Essential Hypertension.

biomarkers hypertension machine learning miRNA

Journal

Non-coding RNA
ISSN: 2311-553X
Titre abrégé: Noncoding RNA
Pays: Switzerland
ID NLM: 101652294

Informations de publication

Date de publication:
25 Oct 2023
Historique:
received: 14 09 2023
revised: 20 10 2023
accepted: 23 10 2023
medline: 21 11 2023
pubmed: 21 11 2023
entrez: 21 11 2023
Statut: epublish

Résumé

Hypertension is a major and modifiable risk factor for cardiovascular diseases. Essential, primary, or idiopathic hypertension accounts for 90-95% of all cases. Identifying novel biomarkers specific to essential hypertension may help in understanding pathophysiological pathways and developing personalized treatments. We tested whether the integration of circulating microRNAs (miRNAs) and clinical risk factors via machine learning modeling may provide useful information and novel tools for essential hypertension diagnosis and management. In total, 174 participants were enrolled in the present observational case-control study, among which, there were 89 patients with essential hypertension and 85 controls. A discovery phase was conducted using small RNA sequencing in whole blood samples obtained from age- and sex-matched hypertension patients (n = 30) and controls (n = 30). A validation phase using RT-qPCR involved the remaining 114 participants. For machine learning, 170 participants with complete data were used to generate and evaluate the classification model. Small RNA sequencing identified seven miRNAs downregulated in hypertensive patients as compared with controls in the discovery group, of which six were confirmed with RT-qPCR. In the validation group, miR-210-3p/361-3p/362-5p/378a-5p/501-5p were also downregulated in hypertensive patients. A machine learning support vector machine (SVM) model including clinical risk factors (sex, BMI, alcohol use, current smoker, and hypertension family history), miR-361-3p, and miR-501-5p was able to classify hypertension patients in a test dataset with an AUC of 0.90, a balanced accuracy of 0.87, a sensitivity of 0.83, and a specificity of 0.91. While five miRNAs exhibited substantial downregulation in hypertension patients, only miR-361-3p and miR-501-5p, alongside clinical risk factors, were consistently chosen in at least eight out of ten sub-training sets within the SVM model. This study highlights the potential significance of miRNA-based biomarkers in deepening our understanding of hypertension's pathophysiology and in personalizing treatment strategies. The strong performance of the SVM model highlights its potential as a valuable asset for diagnosing and managing essential hypertension. The model remains to be extensively validated in independent patient cohorts before evaluating its added value in a clinical setting.

Identifiants

pubmed: 37987360
pii: ncrna9060064
doi: 10.3390/ncrna9060064
pmc: PMC10660456
pii:
doi:

Types de publication

Journal Article

Langues

eng

Subventions

Organisme : European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Actions individual fellowship
ID : 893435
Organisme : EU Horizon 2020
ID : 101016072
Organisme : National Research Fund Luxembourg
ID : C14/BM/8225223
Organisme : National Research Fund Luxembourg
ID : C17/BM/11613033
Organisme : National Research Fund Luxembourg
ID : COVID-19/2020-1/14719577/miRCOVID

Références

Lancet. 2021 Sep 11;398(10304):957-980
pubmed: 34450083
Eur J Pharm Sci. 2019 Apr 1;131:93-98
pubmed: 30753892
Hypertension. 2018 Nov;72(5):1047-1059
pubmed: 30354825
Am J Hypertens. 2021 Sep 22;34(9):989-998
pubmed: 33929496
Clin Transl Med. 2022 Feb;12(2):e585
pubmed: 35167732
Stroke. 2022 Apr;53(4):1054-1064
pubmed: 35255709
Eur Heart J. 2018 Aug 1;39(29):2704-2716
pubmed: 28430919
Am J Physiol Heart Circ Physiol. 2021 Apr 1;320(4):H1486-H1497
pubmed: 33577433
J Transl Med. 2022 Sep 5;20(1):407
pubmed: 36064558
Genes Nutr. 2019 Jan 09;14:2
pubmed: 30651891
Crit Rev Clin Lab Sci. 2023 Mar;60(2):141-152
pubmed: 36325621
J Cancer. 2019 Aug 28;10(21):5090-5098
pubmed: 31602261
Curr Hypertens Rep. 2012 Feb;14(1):79-87
pubmed: 22052337
J Pharmacol Exp Ther. 2023 Jan;384(1):116-122
pubmed: 36549862
J Clin Hypertens (Greenwich). 2017 Mar;19(3):235-240
pubmed: 27550546
JAMA. 1996 May 22-29;275(20):1557-62
pubmed: 8622246
Pulm Circ. 2022 Jan 12;12(1):e12014
pubmed: 35506070
Hypertension. 2021 Mar 3;77(3):960-971
pubmed: 33486986
Int Heart J. 2021 May 29;62(3):636-646
pubmed: 33994501
Croat Med J. 2023 Feb 28;64(1):4-12
pubmed: 36864813
J Clin Hypertens (Greenwich). 2019 Nov;21(11):1724-1731
pubmed: 31556476
Cells. 2023 Jun 14;12(12):
pubmed: 37371099
Sci Adv. 2021 May 7;7(19):
pubmed: 33962944
Future Cardiol. 2007 Jul;3(4):447-56
pubmed: 19804234
Hypertension. 2019 Sep;74(3):477-492
pubmed: 31352819
Hypertension. 2013 May;61(5):1008-13
pubmed: 23460283
Genes (Basel). 2020 Feb 18;11(2):
pubmed: 32085655
Theranostics. 2017 Jun 25;7(10):2555-2564
pubmed: 28819446
Int J Endocrinol. 2015;2015:281756
pubmed: 26839547
J Am Heart Assoc. 2020 Jul 7;9(13):e015640
pubmed: 32538237
J Stroke Cerebrovasc Dis. 2022 Jul;31(7):106443
pubmed: 35487009
Microrna. 2022;11(3):175-184
pubmed: 35984026
Am J Hypertens. 2021 Sep 22;34(9):963-972
pubmed: 34022036
J Hypertens. 2022 Dec 1;40(12):2494-2501
pubmed: 36189460
J Cell Physiol. 2016 Aug;231(8):1638-44
pubmed: 26627535
J Hypertens. 2021 Jan;39(1):84-89
pubmed: 32740403
Zhonghua Yi Xue Za Zhi. 2018 May 15;98(18):1397-1402
pubmed: 29804401
J Mol Histol. 2022 Apr;53(2):357-367
pubmed: 35067807
Medicine (Baltimore). 2017 Apr;96(17):e6417
pubmed: 28445253
Am J Physiol Renal Physiol. 2015 Dec 1;309(11):F943-54
pubmed: 26400542
PLoS One. 2017 Mar 9;12(3):e0173550
pubmed: 28278198
Ageing Res Rev. 2022 May;77:101610
pubmed: 35338919
Circ Res. 2021 Apr 2;128(7):1100-1118
pubmed: 33793339
Recenti Prog Med. 2011 Dec;102(12):461-7
pubmed: 22258189
Front Cardiovasc Med. 2021 Apr 16;8:645541
pubmed: 33937359
Cell Mol Biol Lett. 2020 Oct 07;25:45
pubmed: 33061998
Eur Heart J Acute Cardiovasc Care. 2022 Aug 9;11(8):617-619
pubmed: 35816291
Theranostics. 2020 Jul 9;10(19):8665-8676
pubmed: 32754270
Folia Histochem Cytobiol. 2021;59(1):57-65
pubmed: 33651374
J Am Soc Hypertens. 2014 Jun;8(6):368-75
pubmed: 24794206
EBioMedicine. 2021 Jul;69:103444
pubmed: 34186489
EBioMedicine. 2022 Oct;84:104276
pubmed: 36179553
Bioengineered. 2021 Dec;12(1):2410-2419
pubmed: 34107852
Pregnancy Hypertens. 2017 Oct;10:207-212
pubmed: 29153681

Auteurs

Amela Jusic (A)

Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg.
HAYA Therapeutics SA, Route De La Corniche 6, SuperLab Suisse-Batiment Serine, 1066 Epalinges, Switzerland.

Inela Junuzovic (I)

Department of Internal Medicine, Medical Center "Plava Medical Group", Mihajla i Živka Crnogorčevića do br. 10, 75000 Tuzla, Bosnia and Herzegovina.

Ahmed Hujdurovic (A)

Department of Internal Medicine, Medical Center "Plava Medical Group", Mihajla i Živka Crnogorčevića do br. 10, 75000 Tuzla, Bosnia and Herzegovina.

Lu Zhang (L)

Bioinformatics Platform, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg.

Mélanie Vausort (M)

Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg.

Yvan Devaux (Y)

Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg.

Classifications MeSH