Multicentric development and evaluation of [

Machine learning Non-small cell lung cancer Radiomics Stereotactic body radiation therapy [18F]FDG PET/CT

Journal

European journal of nuclear medicine and molecular imaging
ISSN: 1619-7089
Titre abrégé: Eur J Nucl Med Mol Imaging
Pays: Germany
ID NLM: 101140988

Informations de publication

Date de publication:
21 Nov 2023
Historique:
received: 29 08 2023
accepted: 03 11 2023
medline: 21 11 2023
pubmed: 21 11 2023
entrez: 21 11 2023
Statut: aheadofprint

Résumé

To develop machine learning models to predict regional and/or distant recurrence in patients with early-stage non-small cell lung cancer (ES-NSCLC) after stereotactic body radiation therapy (SBRT) using [ We retrospectively collected 464 patients (60% for training and 40% for testing) from University Hospital of Liège and 63 patients from University Hospital of Brest (external testing set) with ES-NSCLC treated with SBRT between 2010 and 2020 and who had undergone pretreatment [ In the training (n = 273) and testing sets (n = 191 and n = 63), the clinical model achieved moderate performances to predict regional and/or distant recurrence with C-statistics from 0.53 to 0.59 (95% CI, 0.41, 0.67). The radiomic (original_firstorder_Entropy, original_gldm_LowGrayLevelEmphasis and original_glcm_DifferenceAverage) model achieved higher predictive ability in the training set and kept the same performance in the testing sets, with C-statistics from 0.70 to 0.78 (95% CI, 0.63, 0.88) while the combined model performs moderately well with C-statistics from 0.50 to 0.62 (95% CI, 0.37, 0.69). Radiomic features extracted from pre-SBRT analog and digital [

Identifiants

pubmed: 37987783
doi: 10.1007/s00259-023-06510-y
pii: 10.1007/s00259-023-06510-y
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Nagata Y, Hiraoka M, Shibata T, Onishi H, Kokubo M, Karasawa K, et al. Prospective trial of stereotactic body radiation therapy for both operable and inoperable T1N0M0 non-small cell lung cancer: Japan Clinical Oncology Group study JCOG0403. Int J Radiat Oncol Biol Phys. 2015;93:989–96.
pubmed: 26581137 doi: 10.1016/j.ijrobp.2015.07.2278
Guckenberger M, Allgäuer M, Appold S, Dieckmann K, Ernst I, Ganswindt U, et al. Safety and efficacy of stereotactic body radiotherapy for stage 1 non-small-cell lung cancer in routine clinical practice: a patterns-of-care and outcome analysis. J Thorac Oncol. 2013;8:1050–8.
pubmed: 23817193 doi: 10.1097/JTO.0b013e318293dc45
Ricardi U, Frezza G, Filippi AR, Badellino S, Levis M, Navarria P, et al. Stereotactic ablative radiotherapy for stage I histologically proven non-small cell lung cancer: an Italian multicenter observational study. Lung Cancer. 2014;84:248–53.
pubmed: 24681279 doi: 10.1016/j.lungcan.2014.02.015
Timmerman R, Paulus R, Galvin J, Michalski J, Straube W, Bradley J, et al. Stereotactic body radiation therapy for inoperable early stage lung cancer. JAMA. 2010;303:1070–6.
pubmed: 20233825 pmcid: 2907644 doi: 10.1001/jama.2010.261
Eriguchi T, Takeda A, Nemoto T, Tsurugai Y, Sanuki N, Tateishi Y, et al. Relationship between dose prescription methods and local control rate in stereotactic body radiotherapy for early stage non-small-cell lung cancer: systematic review and meta-analysis. Cancers (Basel). 2022;14:3815.
pubmed: 35954478 doi: 10.3390/cancers14153815
Chang JY, Lin SH, Dong W, Liao Z, Gandhi SJ, Gay CM, et al. Stereotactic ablative radiotherapy with or without immunotherapy for early-stage or isolated lung parenchymal recurrent node-negative non-small-cell lung cancer: an open-label, randomised, phase 2 trial. Lancet. 2023;S0140–6736(23):01384–93.
Gao SJ, Jin L, Meadows HW, Shafman TD, Gross CP, Yu JB, et al. Prediction of distant metastases after stereotactic body radiation therapy for early stage NSCLC: development and external validation of a multi-institutional model. J Thorac Oncol. 2023;18:339–49.
pubmed: 36396062 doi: 10.1016/j.jtho.2022.11.007
Vaz SC, Adam JA, Delgado Bolton RC, Vera P, van Elmpt W, Herrmann K, et al. Joint EANM/SNMMI/ESTRO practice recommendations for the use of 2-[18F]FDG PET/CT external beam radiation treatment planning in lung cancer V1.0. Eur J Nucl Med Mol Imaging. 2022;49:1386–406.
pubmed: 35022844 pmcid: 8921015 doi: 10.1007/s00259-021-05624-5
Sharma A, Mohan A, Bhalla AS, Sharma MC, Vishnubhatla S, Das CJ, et al. Role of various metabolic parameters derived from baseline 18F-FDG PET/CT as prognostic markers in non-small cell lung cancer patients undergoing platinum-based chemotherapy. Clin Nucl Med. 2018;43:e8-17.
pubmed: 29112011 doi: 10.1097/RLU.0000000000001886
Kwon W, Howard BA, Herndon JE, Patz EF. FDG uptake on positron emission tomography correlates with survival and time to recurrence in patients with stage I non-small-cell lung cancer. J Thorac Oncol. 2015;10:897–902.
pubmed: 25811445 doi: 10.1097/JTO.0000000000000534
Na F, Wang J, Li C, Deng L, Xue J, Lu Y. Primary tumor standardized uptake value measured on F18-fluorodeoxyglucose positron emission tomography is of prediction value for survival and local control in non-small-cell lung cancer receiving radiotherapy: meta-analysis. J Thorac Oncol. 2014;9:834–42.
pubmed: 24787963 pmcid: 4219540 doi: 10.1097/JTO.0000000000000185
Hoang JK, Hoagland LF, Coleman RE, Coan AD, Herndon JE, Patz EF. Prognostic value of fluorine-18 fluorodeoxyglucose positron emission tomography imaging in patients with advanced-stage non-small-cell lung carcinoma. J Clin Oncol. 2008;26:1459–64.
pubmed: 18349396 doi: 10.1200/JCO.2007.14.3628
Agarwal M, Brahmanday G, Bajaj SK, Ravikrishnan KP, Wong C-YO. Revisiting the prognostic value of preoperative (18)F-fluoro-2-deoxyglucose ( (18)F-FDG) positron emission tomography (PET) in early-stage (I & II) non-small cell lung cancers (NSCLC). Eur J Nucl Med Mol Imaging. 2010;37:691–8.
pubmed: 19915840 doi: 10.1007/s00259-009-1291-x
Lovinfosse P, Janvary ZL, Coucke P, Jodogne S, Bernard C, Hatt M, et al. FDG PET/CT texture analysis for predicting the outcome of lung cancer treated by stereotactic body radiation therapy. Eur J Nucl Med Mol Imaging. 2016;43:1453–60.
pubmed: 26830299 doi: 10.1007/s00259-016-3314-8
Dissaux G, Visvikis D, Da-Ano R, Pradier O, Chajon E, Barillot I, et al. Pretreatment 18F-FDG PET/CT radiomics predict local recurrence in patients treated with stereotactic body radiotherapy for early-stage non-small cell lung cancer: a multicentric study. J Nucl Med. 2020;61:814–20.
pubmed: 31732678 doi: 10.2967/jnumed.119.228106
Wu J, Aguilera T, Shultz D, Gudur M, Rubin DL, Loo BW, et al. Early-stage non-small cell lung cancer: quantitative imaging characteristics of (18)F fluorodeoxyglucose PET/CT allow prediction of distant metastasis. Radiology. 2016;281:270–8.
pubmed: 27046074 doi: 10.1148/radiol.2016151829
Oikonomou A, Khalvati F, Tyrrell PN, Haider MA, Tarique U, Jimenez-Juan L, et al. Radiomics analysis at PET/CT contributes to prognosis of recurrence and survival in lung cancer treated with stereotactic body radiotherapy. Sci Rep. 2018;8:4003.
pubmed: 29507399 pmcid: 5838232 doi: 10.1038/s41598-018-22357-y
Pyka T, Bundschuh RA, Andratschke N, Mayer B, Specht HM, Papp L, et al. Textural features in pre-treatment [F18]-FDG-PET/CT are correlated with risk of local recurrence and disease-specific survival in early stage NSCLC patients receiving primary stereotactic radiation therapy. Radiat Oncol. 2015;10:100.
pubmed: 25900186 pmcid: 4465163 doi: 10.1186/s13014-015-0407-7
Opitz D, Maclin R. Popular ensemble methods: an empirical study. JAIR. 1999;11:169–98.
doi: 10.1613/jair.614
Yasaka K, Akai H, Abe O, Kiryu S. Deep learning with convolutional neural network for differentiation of liver masses at dynamic contrast-enhanced CT: a preliminary study. Radiology. 2018;286:887–96.
pubmed: 29059036 doi: 10.1148/radiol.2017170706
Bourbonne V, Lucia F, Jaouen V, Bert J, Rehn M, Pradier O, et al. Development and prospective validation of a spatial dose pattern based model predicting acute pulmonary toxicity in patients treated with volumetric arc-therapy for locally advanced lung cancer. Radiother Oncol. 2021;164:43–9.
pubmed: 34547351 doi: 10.1016/j.radonc.2021.09.008
Janvary ZL, Jansen N, Baart V, Devillers M, Dechambre D, Lenaerts E, et al. Clinical outcomes of 130 patients with primary and secondary lung tumors treated with Cyberknife robotic stereotactic body radiotherapy. Radiol Oncol. 2017;51:178–86.
pubmed: 28740453 pmcid: 5514658 doi: 10.1515/raon-2017-0015
Senthi S, Lagerwaard FJ, Haasbeek CJA, Slotman BJ, Senan S. Patterns of disease recurrence after stereotactic ablative radiotherapy for early stage non-small-cell lung cancer: a retrospective analysis. Lancet Oncol. 2012;13:802–9.
pubmed: 22727222 doi: 10.1016/S1470-2045(12)70242-5
Schemper M, Smith TL. A note on quantifying follow-up in studies of failure time. Control Clin Trials. 1996;17:343–6.
pubmed: 8889347 doi: 10.1016/0197-2456(96)00075-X
Belli ML, Mori M, Broggi S, Cattaneo GM, Bettinardi V, Dell’Oca I, et al. Quantifying the robustness of [18F]FDG-PET/CT radiomic features with respect to tumor delineation in head and neck and pancreatic cancer patients. Phys Med. 2018;49:105–11.
pubmed: 29866335 doi: 10.1016/j.ejmp.2018.05.013
Velazquez ER, Parmar C, Jermoumi M, Mak RH, van Baardwijk A, Fennessy FM, et al. Volumetric CT-based segmentation of NSCLC using 3D-Slicer. Sci Rep. 2013;3:3529.
pubmed: 24346241 pmcid: 3866632 doi: 10.1038/srep03529
Radiomic features — PyRadiomics v3.1.0rc2.post5+g6a761c4 documentation. https://pyradiomics.readthedocs.io/en/latest/features.html . Accessed 29 Jun 2023.
Zwanenburg A, Vallières M, Abdalah MA, Aerts HJWL, Andrearczyk V, Apte A, et al. The image biomarker standardization initiative: standardized quantitative radiomics for high-throughput image-based phenotyping. Radiology. 2020;295:328–38.
pubmed: 32154773 doi: 10.1148/radiol.2020191145
Fortin J-P, Cullen N, Sheline YI, Taylor WD, Aselcioglu I, Cook PA, et al. Harmonization of cortical thickness measurements across scanners and sites. Neuroimage. 2018;167:104–20.
pubmed: 29155184 doi: 10.1016/j.neuroimage.2017.11.024
Caetano SJ, Sonpavde G, Pond GR. C-statistic: a brief explanation of its construction, interpretation and limitations. Eur J Cancer. 2018;90:130–2.
pubmed: 29221899 doi: 10.1016/j.ejca.2017.10.027
Ernani V, Appiah AK, Marr A, Zhang C, Zhen W, Smith LM, et al. Adjuvant systemic therapy in patients with early-stage NSCLC treated with stereotactic body radiation therapy. J Thorac Oncol. 2019;14:475–81.
pubmed: 30503890 doi: 10.1016/j.jtho.2018.11.018
Zhou Z, Folkert M, Cannon N, Iyengar P, Westover K, Zhang Y, et al. Predicting distant failure in early stage NSCLC treated with SBRT using clinical parameters. Radiother Oncol. 2016;119:501–4.
pubmed: 27156652 pmcid: 4930894 doi: 10.1016/j.radonc.2016.04.029
Manafi-Farid R, Askari E, Shiri I, Pirich C, Asadi M, Khateri M, et al. [18F]FDG-PET/CT radiomics and artificial intelligence in lung cancer: technical aspects and potential clinical applications. Semin Nucl Med. 2022;52:759–80.
pubmed: 35717201 doi: 10.1053/j.semnuclmed.2022.04.004
Fornacon-Wood I, Faivre-Finn C, O’Connor JPB, Price GJ. Radiomics as a personalized medicine tool in lung cancer: Separating the hope from the hype. Lung Cancer. 2020;146:197–208.
pubmed: 32563015 doi: 10.1016/j.lungcan.2020.05.028
Hao H, Zhou Z, Wang J. Distant failure prediction for early stage NSCLC by analyzing PET with sparse representation. In: Medical Imaging 2017: Computer-Aided Diagnosis. SPIE; 2017. p. 1008–14.
Li H, Galperin-Aizenberg M, Pryma D, Simone CB, Fan Y. Unsupervised machine learning of radiomic features for predicting treatment response and overall survival of early stage non-small cell lung cancer patients treated with stereotactic body radiation therapy. Radiother Oncol. 2018;129:218–26.
pubmed: 30473058 pmcid: 6261331 doi: 10.1016/j.radonc.2018.06.025
Li S, Yang N, Li B, Zhou Z, Hao H, Folkert MR, et al. A pilot study using kernelled support tensor machine for distant failure prediction in lung SBRT. Med Image Anal. 2018;50:106–16.
pubmed: 30266009 pmcid: 6237633 doi: 10.1016/j.media.2018.09.004
Yu W, Tang C, Hobbs BP, Li X, Koay EJ, Wistuba II, et al. Development and validation of a predictive radiomics model for clinical outcomes in stage I non-small cell lung cancer. Int J Radiat Oncol Biol Phys. 2018;102:1090–7.
pubmed: 29246722 doi: 10.1016/j.ijrobp.2017.10.046
Sawayanagi S, Yamashita H, Nozawa Y, Takenaka R, Miki Y, Morishima K, et al. Establishment of a prediction model for overall survival after stereotactic body radiation therapy for primary non-small cell lung cancer using radiomics analysis. Cancers (Basel). 2022;14:3859.
pubmed: 36010853 doi: 10.3390/cancers14163859
Lucia F, Bourbonne V, Pleyers C, Dupré P-F, Miranda O, Visvikis D, et al. Multicentric development and evaluation of 18F-FDG PET/CT and MRI radiomics models to predict para-aortic lymph node involvement in locally advanced cervical cancer. Eur J Nucl Med Mol Imaging. 2023. https://doi.org/10.1007/s00259-023-06180-w .
doi: 10.1007/s00259-023-06180-w pubmed: 36892667
Lee TH, Shin H, Ahn YC, Kang MK, Song C, Kim WC, et al. Regional lymph node recurrence after stereotactic body radiation therapy for lung cancer: patterns of recurrence, treatment approaches, and clinical outcomes (KROG 21–09). Radiother Oncol. 2023;183: 109572.
pubmed: 36822359 doi: 10.1016/j.radonc.2023.109572
Klement RJ, Sonke J-J, Allgäuer M, Andratschke N, Appold S, Belderbos J, et al. Correlating dose variables with local tumor control in stereotactic body radiation therapy for early-stage non-small cell lung cancer: a modeling study on 1500 individual treatments. Int J Radiat Oncol Biol Phys. 2020;107:579–86.
pubmed: 32188579 doi: 10.1016/j.ijrobp.2020.03.005
Hatt M, Cheze Le Rest C, Antonorsi N, Tixier F, Tankyevych O, Jaouen V, et al. Radiomics in PET/CT: current status and future AI-based evolutions. Semin Nucl Med. 2021;51:126–33.
pubmed: 33509369 doi: 10.1053/j.semnuclmed.2020.09.002
Hatt M, Tixier F, Pierce L, Kinahan PE, Le Rest CC, Visvikis D. Characterization of PET/CT images using texture analysis: the past, the present… any future? Eur J Nucl Med Mol Imaging. 2017;44:151–65.
pubmed: 27271051 doi: 10.1007/s00259-016-3427-0

Auteurs

François Lucia (F)

Radiation Oncology Department, University Hospital, Brest, France. francois.lucia@chu-brest.fr.
LaTIM, INSERM, UMR 1101, Univ Brest, Brest, France. francois.lucia@chu-brest.fr.
Division of Nuclear Medicine and Oncological Imaging, University Hospital of Liège, Liège, Belgium. francois.lucia@chu-brest.fr.
Service de Radiothérapie, CHRU Morvan, 2 Avenue Foch, 29609 Cedex, Brest, France. francois.lucia@chu-brest.fr.

Thomas Louis (T)

Division of Nuclear Medicine and Oncological Imaging, University Hospital of Liège, Liège, Belgium.

François Cousin (F)

Division of Nuclear Medicine and Oncological Imaging, University Hospital of Liège, Liège, Belgium.

Vincent Bourbonne (V)

Radiation Oncology Department, University Hospital, Brest, France.
LaTIM, INSERM, UMR 1101, Univ Brest, Brest, France.

Dimitris Visvikis (D)

LaTIM, INSERM, UMR 1101, Univ Brest, Brest, France.

Carole Mievis (C)

Department of Radiotherapy Oncology, University Hospital of Liège, Liège, Belgium.

Nicolas Jansen (N)

Department of Radiotherapy Oncology, University Hospital of Liège, Liège, Belgium.

Bernard Duysinx (B)

Division of Pulmonology, CHU Liège, Liège, Belgium.

Romain Le Pennec (R)

Nuclear Medicine Department, University Hospital, Brest, France.
GETBO, INSERM, UMR 1304, University of Brest, UBO, Brest, France.

Malik Nebbache (M)

Radiation Oncology Department, University Hospital, Brest, France.

Martin Rehn (M)

Radiation Oncology Department, University Hospital, Brest, France.

Mohamed Hamya (M)

Radiation Oncology Department, University Hospital, Brest, France.

Margaux Geier (M)

Medical Oncology Department, University Hospital, Brest, France.

Pierre-Yves Salaun (PY)

Nuclear Medicine Department, University Hospital, Brest, France.
GETBO, INSERM, UMR 1304, University of Brest, UBO, Brest, France.

Ulrike Schick (U)

Radiation Oncology Department, University Hospital, Brest, France.
LaTIM, INSERM, UMR 1101, Univ Brest, Brest, France.

Mathieu Hatt (M)

LaTIM, INSERM, UMR 1101, Univ Brest, Brest, France.

Philippe Coucke (P)

Department of Radiotherapy Oncology, University Hospital of Liège, Liège, Belgium.

Roland Hustinx (R)

Division of Nuclear Medicine and Oncological Imaging, University Hospital of Liège, Liège, Belgium.
GIGA-CRC In Vivo Imaging, University of Liège, Liège, Belgium.

Pierre Lovinfosse (P)

Division of Nuclear Medicine and Oncological Imaging, University Hospital of Liège, Liège, Belgium.

Classifications MeSH