Can China reach the CO

CO2 emission peak prediction Grey prediction model IPCC Rolling mechanism

Journal

Environmental science and pollution research international
ISSN: 1614-7499
Titre abrégé: Environ Sci Pollut Res Int
Pays: Germany
ID NLM: 9441769

Informations de publication

Date de publication:
21 Nov 2023
Historique:
received: 07 06 2023
accepted: 28 10 2023
medline: 21 11 2023
pubmed: 21 11 2023
entrez: 21 11 2023
Statut: aheadofprint

Résumé

With the continuous emission of greenhouse gases, climate issues such as global warming have attracted widespread attention. As the largest CO

Identifiants

pubmed: 37987978
doi: 10.1007/s11356-023-30812-1
pii: 10.1007/s11356-023-30812-1
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : the Natural Science Foundation of China
ID : 22162007
Organisme : the Science and Technology Supporting Project of Guizhou Province
ID : [2021]480
Organisme : the Science and Technology Supporting Project of Guizhou Province
ID : [2023]379
Organisme : the Wengfu (Group) Co., Ltd. Technology Development Project
ID : WH-220787(YF)
Organisme : Project from Guizhou Institute of Innovation and development of dual-carbon and new energy technologies
ID : DCRE-2023-05

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Chen W, Wang FJ, Zheng B, Cai W (2017) Non-Euclidean distance fundamental solution of Hausdorff derivative partial differential equations. Eng Anal Bound Elem 84:213–219. https://doi.org/10.1016/j.enganabound.2017.09.003
doi: 10.1016/j.enganabound.2017.09.003
Chou JM, Li YM, Xu Y, Zhao WX, Li JN, Hao YD (2022) Carbon dioxide emission characteristics and peak trend analysis of countries along the Belt and Road. Environ Sci Pollut Res 30(34):81881–81895. https://doi.org/10.1007/s11356-022-22699-1
doi: 10.1007/s11356-022-22699-1
Cong JH, Qin LM, Wang XP, Kang WM, Zhang YX, Liu QY (2017) Research on Shanxi’s CO
doi: 10.2991/jahp-17.2017.59
Cui J, Shan DM, Liu SF (2015) Novel grey model for predicting casualties of strong earthquakes erupting in high population density areas. In: 2015 IEEE International Conference on Grey Systems and Intelligent Services (GSIS). IEEE, pp 277–280. https://doi.org/10.1109/GSIS.2015.7301868
doi: 10.1109/GSIS.2015.7301868
Dai DW, Li KX, Zhao SH, Zhou B (2022) Research on prediction and realization path of carbon peak of construction industry based on EGM-BP model. Front Energy Res 10:981097. https://doi.org/10.3389/fenrg.2022.981097
doi: 10.3389/fenrg.2022.981097
Ding ST, Zhang M, Song Y (2019) Exploring China’s carbon emissions peak for different carbon tax scenarios. Energy Policy 129:1245–1252. https://doi.org/10.1016/j.enpol.2019.03.037
doi: 10.1016/j.enpol.2019.03.037
Du Q, Wang N, Che L (2015) Forecasting China’s per capita carbon emissions under a new three-step economic development strategy. J Resour Ecol 6(5):318–323. https://doi.org/10.5814/j.issn.1674-764x.2015.05.005
doi: 10.5814/j.issn.1674-764x.2015.05.005
Hao Y, Wei YM (2015) When does the turning point in China’s CO
doi: 10.1017/S1355770X15000017
Li FF, Xu Z, Ma H (2018) Can China achieve its CO
doi: 10.1016/j.ecolind.2017.08.048
Li WX, Bao L, Li Y, Si HY, Li YM (2022) Assessing the transition to low-carbon urban transport: a global comparisons. Resour Conserv Recycl 180:106179. https://doi.org/10.1016/j.resconrec.2022.106179
doi: 10.1016/j.resconrec.2022.106179
Liu WD, Jiang WB, Tang ZP, Han MY (2022) Pathways to peak carbon emissions in China by 2030: an analysis in relation to the economic growth rate. Sci China Earth Sci 65(6):1057–1072. https://doi.org/10.1007/s11430-021-9901-y
doi: 10.1007/s11430-021-9901-y
Luo D, Wei BL, Li YW (2015) The optimization grey incidence analysis models. In: 2015 IEEE International Conference on Grey Systems and Intelligent Services (GSIS). IEEE, pp 167–172. https://doi.org/10.1109/GSIS.2015.7301849
doi: 10.1109/GSIS.2015.7301849
Ma X, Wu WQ, Zeng B, Wang Y, Wu XX (2020) The conformable fractional grey system model. ISA Trans 96:255–271. https://doi.org/10.1016/j.isatra.2019.07.009
doi: 10.1016/j.isatra.2019.07.009
Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007
doi: 10.1016/j.advengsoft.2013.12.007
Perissi I, Jones A (2022) Investigating European Union decarbonization strategies: evaluating the pathway to carbon neutrality by 2050. Sustainability 14(8):4728. https://doi.org/10.3390/su14084728
doi: 10.3390/su14084728
Qian WY, Wang J (2020) An improved seasonal GM (1, 1) model based on the HP filter for forecasting wind power generation in China. Energy 209:118499. https://doi.org/10.1016/j.energy.2020.118499
doi: 10.1016/j.energy.2020.118499
Schleussner CF, Ganti G, Rogelj J, Gidden MJ (2022) An emission pathway classification reflecting the Paris Agreement climate objectives. Commun Earth Environ 3(1):135. https://doi.org/10.1038/s43247-022-00467-w
doi: 10.1038/s43247-022-00467-w
Wang CN, Chou MT, Hsu HP, Wang JW (2017) Sridhar S (2017) The efficiency improvement by combining HHO gas, coal and oil in boiler for electricity generation. Energies 10(2):251. https://doi.org/10.3390/en10020251
doi: 10.3390/en10020251
Wang HL, He JK (2019) China’s pre-2020 CO
doi: 10.1007/s11708-019-0640-0
Wang WJ, Wang JX (2021) Determinants investigation and peak prediction of CO
doi: 10.1007/s11356-021-14852-z
Wang ZX, Li Q (2019) Modelling the nonlinear relationship between CO
doi: 10.1016/j.jclepro.2018.10.010
Wu LF, Liu SF, Yao LG, Xu RT, Lei XP (2015) Using fractional order accumulation to reduce errors from inverse accumulated generating operator of grey model. Soft Computing 19:483–488. https://doi.org/10.1007/s00500-014-1268-y
doi: 10.1007/s00500-014-1268-y
Wu WQ, Ma X, Zhang YY, Li WP, Wang Y (2020) A novel conformable fractional non-homogeneous grey model for forecasting carbon dioxide emissions of BRICS countries. Sci Total Environ 707:135447. https://doi.org/10.1016/j.scitotenv.2019.135447
doi: 10.1016/j.scitotenv.2019.135447
Xie HJ, Zuo XR, Chen YM, Yan HX, Ni JJ (2022) Numerical model for static chamber measurement of multi-component landfill gas emissions and its application. Environ Sci Pollut Res 29(49):74225–74241. https://doi.org/10.1007/s11356-022-20951-2
doi: 10.1007/s11356-022-20951-2
Xie NM, Liu SF (2009) Discrete grey forecasting model and its optimization. App Math Model 33(2):1173–1186. https://doi.org/10.1016/j.apm.2008.01.011
doi: 10.1016/j.apm.2008.01.011
Zhou WH, Zeng B, Wang JZ, Luo XS, Liu XZ (2021) Forecasting Chinese carbon emissions using a novel grey rolling prediction model. Chaos Solit Fractals 147:110968. https://doi.org/10.1016/j.chaos.2021.110968
doi: 10.1016/j.chaos.2021.110968

Auteurs

Hongpeng Lu (H)

School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, China.

Yuzhi Xu (Y)

School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, China.

Wan Wang (W)

School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, China.

Jianbo Zhao (J)

School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, China.

Guidong Li (G)

School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, China.

Mengkui Tian (M)

School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, China. tianmk78@126.com.

Classifications MeSH