Expression, Purification, and Bioinformatic Prediction of Mycobacterium tuberculosis Rv0439c as a Potential NADP
Molecular docking
Mycobacterium tuberculosis
Retinol dehydrogenase
Short-chain dehydrogenase/reductase
pGro7 plasmid
Journal
Molecular biotechnology
ISSN: 1559-0305
Titre abrégé: Mol Biotechnol
Pays: Switzerland
ID NLM: 9423533
Informations de publication
Date de publication:
21 Nov 2023
21 Nov 2023
Historique:
received:
03
08
2023
accepted:
23
10
2023
medline:
22
11
2023
pubmed:
22
11
2023
entrez:
22
11
2023
Statut:
aheadofprint
Résumé
Although the genome of Mycobacterium tuberculosis (Mtb) H37Rv, the causative agent of tuberculosis, has been repeatedly annotated and updated, a range of proteins from this human pathogen have unknown functions. Mtb Rv0439c, a member of the short-chain dehydrogenase/reductases superfamily, has yet to be cloned and characterized, and its function remains unclear. In this work, we present for the first time the optimized expression and purification of this enzyme, as well as bioinformatic analysis to unveil its potential coenzyme and substrate. Optimized expression in Escherichia coli yielded soluble Rv0439c, while certain tag fusions resulted in insolubility. Sequence and docking analyses strongly suggested that Rv0439c has a clear preference for NADP
Identifiants
pubmed: 37989944
doi: 10.1007/s12033-023-00956-z
pii: 10.1007/s12033-023-00956-z
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Natural Science Research Project of the Anhui Educational Committee
ID : 2023AH051932
Organisme : Doctoral Starting up Foundation of Bengbu Medical College
ID : bsqd202215
Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Houben, R. M., & Dodd, P. J. (2016). The global burden of latent tuberculosis infection: A re-estimation using mathematical modelling. Plos Medicine, 13(10), e1002152.
pubmed: 27780211
pmcid: 5079585
doi: 10.1371/journal.pmed.1002152
Chitale, P., Lemenze, A. D., Fogarty, E. C., Shah, A., Grady, C., Odom-Mabey, A. R., Johnson, W. E., Yang, J. H., Eren, A. M., Brosch, R., et al. (2022). A comprehensive update to the Mycobacterium tuberculosis H37Rv reference genome. Nature Communications, 13(1), 7068.
pubmed: 36400796
pmcid: 9673877
doi: 10.1038/s41467-022-34853-x
Cole, S. T., Brosch, R., Parkhill, J., Garnier, T., Churcher, C., Harris, D., Gordon, S. V., Eiglmeier, K., Gas, S., Barry, C. E., et al. (1998). Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature, 393(6685), 537–544.
pubmed: 9634230
doi: 10.1038/31159
Camus, J. C., Pryor, M. J., Médigue, C., & Cole, S. T. (2002). Re-annotation of the genome sequence of Mycobacterium tuberculosis H37Rv. Microbiology (Reading), 148(Pt 10), 2967–2973.
pubmed: 12368430
doi: 10.1099/00221287-148-10-2967
Kramm, A., Kisiela, M., Schulz, R., & Maser, E. (2012). Short-chain dehydrogenases/reductases in cyanobacteria. FEBS Journal, 279(6), 1030–1043.
pubmed: 22251568
doi: 10.1111/j.1742-4658.2012.08494.x
Beck, K. R., Kaserer, T., Schuster, D., & Odermatt, A. (2017). Virtual screening applications in short-chain dehydrogenase/reductase research. Journal of Steroid Biochemistry and Molecular Biology, 171, 157–177.
pubmed: 28286207
doi: 10.1016/j.jsbmb.2017.03.008
Coincon, M., Heitz, A., Chiche, L., & Derreumaux, P. (2005). The betaalphabetaalphabeta elementary supersecondary structure of the Rossmann fold from porcine lactate dehydrogenase exhibits characteristics of a molten globule. Proteins, 60(4), 740–745.
pubmed: 16001419
doi: 10.1002/prot.20507
Kallberg, Y., Oppermann, U., & Persson, B. (2010). Classification of the short-chain dehydrogenase/reductase superfamily using hidden Markov models. FEBS Journal, 277(10), 2375–2386.
pubmed: 20423462
doi: 10.1111/j.1742-4658.2010.07656.x
Favia, A. D., Nobeli, I., Glaser, F., & Thornton, J. M. (2008). Molecular docking for substrate identification: The short-chain dehydrogenases/reductases. Journal of Molecular Biology, 375(3), 855–874.
pubmed: 18036612
doi: 10.1016/j.jmb.2007.10.065
Rosu, V., Bandino, E., & Cossu, A. (2013). Unraveling the transcriptional regulatory networks associated to mycobacterial cell wall defective form induction by glycine and lysozyme treatment. Microbiological Research, 168(3), 153–164.
pubmed: 23195184
doi: 10.1016/j.micres.2012.10.002
Xie, L., Wang, X., Zeng, J., Zhou, M., Duan, X., Li, Q., Zhang, Z., Luo, H., Pang, L., Li, W., et al. (2015). Proteome-wide lysine acetylation profiling of the human pathogen Mycobacterium tuberculosis. The International Journal of Biochemistry & Cell Biology, 59, 193–202.
doi: 10.1016/j.biocel.2014.11.010
Tang, W., Guo, M., Jiang, X., & Xu, H. (2021). Expression, purification, and biochemical characterization of an NAD+-dependent homoserine dehydrogenase from the symbiotic Polynucleobacter necessarius subsp. necessarius. Protein Expression and Purification, 188, 105977.
pubmed: 34547433
doi: 10.1016/j.pep.2021.105977
Ho, S. N., Hunt, H. D., Horton, R. M., Pullen, J. K., & Pease, L. R. (1989). Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene, 77(1), 51–59.
pubmed: 2744487
doi: 10.1016/0378-1119(89)90358-2
Notredame, C., Higgins, D. G., & Heringa, J. (2000). T-Coffee: A novel method for fast and accurate multiple sequence alignment. Journal of Molecular Biology, 302(1), 205–217.
pubmed: 10964570
doi: 10.1006/jmbi.2000.4042
Robert, X., & Gouet, P. (2014). Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Research, 42, W320-324.
pubmed: 24753421
pmcid: 4086106
doi: 10.1093/nar/gku316
Yu, T., Cui, H., Li, J. C., Luo, Y., Jiang, G., & Zhao, H. (2023). Enzyme function prediction using contrastive learning. Science, 379(6639), 1358–1363.
pubmed: 36996195
doi: 10.1126/science.adf2465
Li, Y., Wang, S., Umarov, R., Xie, B., Fan, M., Li, L., & Gao, X. (2018). DEEPre: Sequence-based enzyme EC number prediction by deep learning. Bioinformatics, 34(5), 760–769.
pubmed: 29069344
doi: 10.1093/bioinformatics/btx680
Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., et al. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583–589.
pubmed: 34265844
pmcid: 8371605
doi: 10.1038/s41586-021-03819-2
Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., de Beer, T. A. P., Rempfer, C., Bordoli, L., et al. (2018). SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Research, 46(W1), W296-w303.
pubmed: 29788355
pmcid: 6030848
doi: 10.1093/nar/gky427
Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461.
pubmed: 19499576
pmcid: 3041641
doi: 10.1002/jcc.21334
Valdés-Tresanco, M. S., Valdés-Tresanco, M. E., Valiente, P. A., & Moreno, E. (2020). AMDock: A versatile graphical tool for assisting molecular docking with Autodock Vina and Autodock4. Biology Direct, 15(1), 12.
pubmed: 32938494
pmcid: 7493944
doi: 10.1186/s13062-020-00267-2
Cassetta, A., Stojan, J., Krastanova, I., Kristan, K., Brunskole Švegelj, M., Lamba, D., & Lanišnik Rižner, T. (2017). Structural basis for inhibition of 17β-hydroxysteroid dehydrogenases by phytoestrogens: The case of fungal 17β-HSDcl. Journal of Steroid Biochemistry and Molecular Biology, 171, 80–93.
pubmed: 28259640
doi: 10.1016/j.jsbmb.2017.02.020
Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791.
pubmed: 19399780
pmcid: 2760638
doi: 10.1002/jcc.21256
Eberhardt, J., Santos-Martins, D., Tillack, A. F., & Forli, S. (2021). AutoDock Vina 1.2.0: New docking methods, expanded force field, and Python bindings. Journal of Chemical Information and Modeling, 61(8), 3891–3898.
pubmed: 34278794
doi: 10.1021/acs.jcim.1c00203
O’Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., & Hutchison, G. R. (2011). Open Babel: An open chemical toolbox. Journal of Cheminformatics, 3, 33.
pubmed: 21982300
pmcid: 3198950
doi: 10.1186/1758-2946-3-33
DeLano, W. L. (2002). The PyMOL molecular graphics system on world wide web. https://pymol.org/2/
Adasme, M. F., Linnemann, K. L., Bolz, S. N., Kaiser, F., Salentin, S., Haupt, V. J., & Schroeder, M. (2021). PLIP 2021: Expanding the scope of the protein-ligand interaction profiler to DNA and RNA. Nucleic Acids Research, 49(W1), W530–W534.
pubmed: 33950214
pmcid: 8262720
doi: 10.1093/nar/gkab294
Persson, B., Kallberg, Y., Bray, J. E., Bruford, E., Dellaporta, S. L., Favia, A. D., Duarte, R. G., Jornvall, H., Kavanagh, K. L., Kedishvili, N., et al. (2009). The SDR (short-chain dehydrogenase/reductase and related enzymes) nomenclature initiative. Chemico-Biological Interactions, 178(1–3), 94–98.
pubmed: 19027726
doi: 10.1016/j.cbi.2008.10.040
Persson, B., Kallberg, Y., Oppermann, U., & Jörnvall, H. (2003). Coenzyme-based functional assignments of short-chain dehydrogenases/reductases (SDRs). Chemico-Biological Interactions, 143–144, 271–278.
pubmed: 12604213
doi: 10.1016/S0009-2797(02)00223-5
Filling, C., Berndt, K. D., Benach, J., Knapp, S., Prozorovski, T., Nordling, E., Ladenstein, R., Jornvall, H., & Oppermann, U. (2002). Critical residues for structure and catalysis in short-chain dehydrogenases/reductases. Journal of Biological Chemistry, 277(28), 25677–25684.
pubmed: 11976334
doi: 10.1074/jbc.M202160200
Schomburg, D., & Schomburg, I. (2013). NADP-retinol dehydrogenase 111300. In D. Schomburg & I. Schomburg (Eds.), Class 1 oxidoreductases: EC 1 (pp. 14–29). Springer.
doi: 10.1007/978-3-642-36265-1_6
Chatzi, C., Cunningham, T. J., & Duester, G. (2013). Investigation of retinoic acid function during embryonic brain development using retinaldehyde-rescued Rdh10 knockout mice. Developmental Dynamics, 242(9), 1056–1065.
pubmed: 23765990
doi: 10.1002/dvdy.23999
Sandell, L. L., Sanderson, B. W., Moiseyev, G., Johnson, T., Mushegian, A., Young, K., Rey, J. P., Ma, J. X., Staehling-Hampton, K., & Trainor, P. A. (2007). RDH10 is essential for synthesis of embryonic retinoic acid and is required for limb, craniofacial, and organ development. Genes & Development, 21(9), 1113–1124.
doi: 10.1101/gad.1533407
Dong, C. S., Zhang, W. L., Wang, Q., Li, Y. S., Wang, X., Zhang, M., & Liu, L. (2020). Crystal structures of cyanobacterial light-dependent protochlorophyllide oxidoreductase. Proceedings of the National Academy of Sciences of the United States of America, 117(15), 8455–8461.
pubmed: 32234783
pmcid: 7165480
doi: 10.1073/pnas.1920244117
Malakhov, M. P., Mattern, M. R., Malakhova, O. A., Drinker, M., Weeks, S. D., & Butt, T. R. (2004). SUMO fusions and SUMO-specific protease for efficient expression and purification of proteins. Journal of Structural and Functional Genomics, 5(1), 75–86.
pubmed: 15263846
doi: 10.1023/B:JSFG.0000029237.70316.52
Lee, S. H., & Altenberg, G. A. (2003). Expression of functional multidrug-resistance protein 1 in Saccharomyces cerevisiae: Effects of N- and C-terminal affinity tags. Biochemical and Biophysical Research Communications, 306(3), 644–649.
pubmed: 12810067
doi: 10.1016/S0006-291X(03)01029-5
Jin, W., Li, S., Chen, J., Liu, B., Li, J., Li, X., Zhang, F., Linhardt, R. J., & Zhong, W. (2018). Increased soluble heterologous expression of a rat brain 3-O-sulfotransferase 1 - A key enzyme for heparin biosynthesis. Protein Expression and Purification, 151, 23–29.
pubmed: 29894802
doi: 10.1016/j.pep.2018.06.007
Rodrigo, W. W., Dassanayake, R. S., Karunanayake, E. H., Gunawardene, Y. I., & Weerasena, O. V. (2014). Heterologous expression, chaperone mediated solubilization and purification of parasitic nematode-specific growth factor-like protein of Setaria digitata. Asian Pacific Journal of Tropical Medicine, 7(2), 85–92.
pubmed: 24461519
doi: 10.1016/S1995-7645(14)60001-8
Duan, X., Zhang, X., Shen, Z., Su, E., Zhao, L., & Pei, J. (2019). Efficient production of aggregation prone 4-alpha-glucanotransferase by combined use of molecular chaperones and chemical chaperones in Escherichia coli. Journal of Biotechnology, 292, 68–75.
pubmed: 30690094
doi: 10.1016/j.jbiotec.2019.01.014
Mitsuda, M., & Iwasaki, M. (2006). Improvement in the expression of CYP2B6 by co-expression with molecular chaperones GroES/EL in Escherichia coli. Protein Expression and Purification, 46(2), 401–405.
pubmed: 16310378
doi: 10.1016/j.pep.2005.10.017
Du, L., Yue, J., Zhu, Y., & Yin, S. (2022). Production of Indigo by recombinant Escherichia coli with expression of monooxygenase, tryptophanase, and molecular chaperone. Foods, 11(14), 2117.
pubmed: 35885360
pmcid: 9320885
doi: 10.3390/foods11142117
Tang, W., Dong, X., Meng, J., Feng, Y., Xie, M., Xu, H., & Song, P. (2021). Biochemical characterization and redesign of the coenzyme specificity of a novel monofunctional NAD
pubmed: 34022392
doi: 10.1016/j.pep.2021.105909
Tang, W., Lian, C., Si, Y., & Chang, J. (2021). Purification and characterization of (2R,3R)-2,3-butanediol dehydrogenase of the human pathogen Neisseria gonorrhoeae FA1090 produced in Escherichia coli. Molecular Biotechnology, 63(6), 491–501.
pubmed: 33763825
doi: 10.1007/s12033-021-00308-9
Tang, W., Wu, M., Qin, N., Liu, L., Meng, R., Wang, C., Wang, P., Zang, J., & Zhu, G. (2021). Crystal structures of NAD
pubmed: 33957092
doi: 10.1016/j.abb.2021.108898
Bonetta, R., & Valentino, G. (2020). Machine learning techniques for protein function prediction. Proteins, 88(3), 397–413.
pubmed: 31603244
doi: 10.1002/prot.25832
Rentzsch, R., & Orengo, C. A. (2009). Protein function prediction–the power of multiplicity. Trends in Biotechnology, 27(4), 210–219.
pubmed: 19251332
doi: 10.1016/j.tibtech.2009.01.002
Lee, S. A., Belyaeva, O. V., & Kedishvili, N. Y. (2009). Biochemical characterization of human epidermal retinol dehydrogenase 2. Chemico-Biological Interactions, 178(1–3), 182–187.
pubmed: 18926804
doi: 10.1016/j.cbi.2008.09.019
Wu, Y., Huang, T., Li, X., Shen, C., Ren, H., Wang, H., Wu, T., Fu, X., Deng, S., Feng, Z., et al. (2023). Retinol dehydrogenase 10 reduction mediated retinol metabolism disorder promotes diabetic cardiomyopathy in male mice. Nature Communications, 14(1), 1181.
pubmed: 36864033
pmcid: 9981688
doi: 10.1038/s41467-023-36837-x
Yang, M., Zhang, L., Tao, H. L., Sun, Y. C., Lou, Z. Z., Jia, W. Z., Hu, L. H., & Gao, C. H. (2019). OxiR specifically responds to isoniazid and regulates isoniazid susceptibility in mycobacteria. FEMS Microbiology Letters, 366(10), fnz109.
pubmed: 31125044
doi: 10.1093/femsle/fnz109
Zhao, S., Li, R., Li, Y., Chen, W., Zhang, Y., & Chen, G. (2012). Roles of vitamin A status and retinoids in glucose and fatty acid metabolism. Biochemistry and Cell Biology, 90(2), 142–152.
pubmed: 22292422
doi: 10.1139/o11-079
Lhor, M., & Salesse, C. (2014). Retinol dehydrogenases: Membrane-bound enzymes for the visual function. Biochemistry and Cell Biology, 92(6), 510–523.
pubmed: 25357265
doi: 10.1139/bcb-2014-0082