Expression, Purification, and Bioinformatic Prediction of Mycobacterium tuberculosis Rv0439c as a Potential NADP

Molecular docking Mycobacterium tuberculosis Retinol dehydrogenase Short-chain dehydrogenase/reductase pGro7 plasmid

Journal

Molecular biotechnology
ISSN: 1559-0305
Titre abrégé: Mol Biotechnol
Pays: Switzerland
ID NLM: 9423533

Informations de publication

Date de publication:
21 Nov 2023
Historique:
received: 03 08 2023
accepted: 23 10 2023
medline: 22 11 2023
pubmed: 22 11 2023
entrez: 22 11 2023
Statut: aheadofprint

Résumé

Although the genome of Mycobacterium tuberculosis (Mtb) H37Rv, the causative agent of tuberculosis, has been repeatedly annotated and updated, a range of proteins from this human pathogen have unknown functions. Mtb Rv0439c, a member of the short-chain dehydrogenase/reductases superfamily, has yet to be cloned and characterized, and its function remains unclear. In this work, we present for the first time the optimized expression and purification of this enzyme, as well as bioinformatic analysis to unveil its potential coenzyme and substrate. Optimized expression in Escherichia coli yielded soluble Rv0439c, while certain tag fusions resulted in insolubility. Sequence and docking analyses strongly suggested that Rv0439c has a clear preference for NADP

Identifiants

pubmed: 37989944
doi: 10.1007/s12033-023-00956-z
pii: 10.1007/s12033-023-00956-z
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Natural Science Research Project of the Anhui Educational Committee
ID : 2023AH051932
Organisme : Doctoral Starting up Foundation of Bengbu Medical College
ID : bsqd202215

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Houben, R. M., & Dodd, P. J. (2016). The global burden of latent tuberculosis infection: A re-estimation using mathematical modelling. Plos Medicine, 13(10), e1002152.
pubmed: 27780211 pmcid: 5079585 doi: 10.1371/journal.pmed.1002152
Chitale, P., Lemenze, A. D., Fogarty, E. C., Shah, A., Grady, C., Odom-Mabey, A. R., Johnson, W. E., Yang, J. H., Eren, A. M., Brosch, R., et al. (2022). A comprehensive update to the Mycobacterium tuberculosis H37Rv reference genome. Nature Communications, 13(1), 7068.
pubmed: 36400796 pmcid: 9673877 doi: 10.1038/s41467-022-34853-x
Cole, S. T., Brosch, R., Parkhill, J., Garnier, T., Churcher, C., Harris, D., Gordon, S. V., Eiglmeier, K., Gas, S., Barry, C. E., et al. (1998). Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature, 393(6685), 537–544.
pubmed: 9634230 doi: 10.1038/31159
Camus, J. C., Pryor, M. J., Médigue, C., & Cole, S. T. (2002). Re-annotation of the genome sequence of Mycobacterium tuberculosis H37Rv. Microbiology (Reading), 148(Pt 10), 2967–2973.
pubmed: 12368430 doi: 10.1099/00221287-148-10-2967
Kramm, A., Kisiela, M., Schulz, R., & Maser, E. (2012). Short-chain dehydrogenases/reductases in cyanobacteria. FEBS Journal, 279(6), 1030–1043.
pubmed: 22251568 doi: 10.1111/j.1742-4658.2012.08494.x
Beck, K. R., Kaserer, T., Schuster, D., & Odermatt, A. (2017). Virtual screening applications in short-chain dehydrogenase/reductase research. Journal of Steroid Biochemistry and Molecular Biology, 171, 157–177.
pubmed: 28286207 doi: 10.1016/j.jsbmb.2017.03.008
Coincon, M., Heitz, A., Chiche, L., & Derreumaux, P. (2005). The betaalphabetaalphabeta elementary supersecondary structure of the Rossmann fold from porcine lactate dehydrogenase exhibits characteristics of a molten globule. Proteins, 60(4), 740–745.
pubmed: 16001419 doi: 10.1002/prot.20507
Kallberg, Y., Oppermann, U., & Persson, B. (2010). Classification of the short-chain dehydrogenase/reductase superfamily using hidden Markov models. FEBS Journal, 277(10), 2375–2386.
pubmed: 20423462 doi: 10.1111/j.1742-4658.2010.07656.x
Favia, A. D., Nobeli, I., Glaser, F., & Thornton, J. M. (2008). Molecular docking for substrate identification: The short-chain dehydrogenases/reductases. Journal of Molecular Biology, 375(3), 855–874.
pubmed: 18036612 doi: 10.1016/j.jmb.2007.10.065
Rosu, V., Bandino, E., & Cossu, A. (2013). Unraveling the transcriptional regulatory networks associated to mycobacterial cell wall defective form induction by glycine and lysozyme treatment. Microbiological Research, 168(3), 153–164.
pubmed: 23195184 doi: 10.1016/j.micres.2012.10.002
Xie, L., Wang, X., Zeng, J., Zhou, M., Duan, X., Li, Q., Zhang, Z., Luo, H., Pang, L., Li, W., et al. (2015). Proteome-wide lysine acetylation profiling of the human pathogen Mycobacterium tuberculosis. The International Journal of Biochemistry & Cell Biology, 59, 193–202.
doi: 10.1016/j.biocel.2014.11.010
Tang, W., Guo, M., Jiang, X., & Xu, H. (2021). Expression, purification, and biochemical characterization of an NAD+-dependent homoserine dehydrogenase from the symbiotic Polynucleobacter necessarius subsp. necessarius. Protein Expression and Purification, 188, 105977.
pubmed: 34547433 doi: 10.1016/j.pep.2021.105977
Ho, S. N., Hunt, H. D., Horton, R. M., Pullen, J. K., & Pease, L. R. (1989). Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene, 77(1), 51–59.
pubmed: 2744487 doi: 10.1016/0378-1119(89)90358-2
Notredame, C., Higgins, D. G., & Heringa, J. (2000). T-Coffee: A novel method for fast and accurate multiple sequence alignment. Journal of Molecular Biology, 302(1), 205–217.
pubmed: 10964570 doi: 10.1006/jmbi.2000.4042
Robert, X., & Gouet, P. (2014). Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Research, 42, W320-324.
pubmed: 24753421 pmcid: 4086106 doi: 10.1093/nar/gku316
Yu, T., Cui, H., Li, J. C., Luo, Y., Jiang, G., & Zhao, H. (2023). Enzyme function prediction using contrastive learning. Science, 379(6639), 1358–1363.
pubmed: 36996195 doi: 10.1126/science.adf2465
Li, Y., Wang, S., Umarov, R., Xie, B., Fan, M., Li, L., & Gao, X. (2018). DEEPre: Sequence-based enzyme EC number prediction by deep learning. Bioinformatics, 34(5), 760–769.
pubmed: 29069344 doi: 10.1093/bioinformatics/btx680
Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., et al. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583–589.
pubmed: 34265844 pmcid: 8371605 doi: 10.1038/s41586-021-03819-2
Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., de Beer, T. A. P., Rempfer, C., Bordoli, L., et al. (2018). SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Research, 46(W1), W296-w303.
pubmed: 29788355 pmcid: 6030848 doi: 10.1093/nar/gky427
Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461.
pubmed: 19499576 pmcid: 3041641 doi: 10.1002/jcc.21334
Valdés-Tresanco, M. S., Valdés-Tresanco, M. E., Valiente, P. A., & Moreno, E. (2020). AMDock: A versatile graphical tool for assisting molecular docking with Autodock Vina and Autodock4. Biology Direct, 15(1), 12.
pubmed: 32938494 pmcid: 7493944 doi: 10.1186/s13062-020-00267-2
Cassetta, A., Stojan, J., Krastanova, I., Kristan, K., Brunskole Švegelj, M., Lamba, D., & Lanišnik Rižner, T. (2017). Structural basis for inhibition of 17β-hydroxysteroid dehydrogenases by phytoestrogens: The case of fungal 17β-HSDcl. Journal of Steroid Biochemistry and Molecular Biology, 171, 80–93.
pubmed: 28259640 doi: 10.1016/j.jsbmb.2017.02.020
Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791.
pubmed: 19399780 pmcid: 2760638 doi: 10.1002/jcc.21256
Eberhardt, J., Santos-Martins, D., Tillack, A. F., & Forli, S. (2021). AutoDock Vina 1.2.0: New docking methods, expanded force field, and Python bindings. Journal of Chemical Information and Modeling, 61(8), 3891–3898.
pubmed: 34278794 doi: 10.1021/acs.jcim.1c00203
O’Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., & Hutchison, G. R. (2011). Open Babel: An open chemical toolbox. Journal of Cheminformatics, 3, 33.
pubmed: 21982300 pmcid: 3198950 doi: 10.1186/1758-2946-3-33
DeLano, W. L. (2002). The PyMOL molecular graphics system on world wide web. https://pymol.org/2/
Adasme, M. F., Linnemann, K. L., Bolz, S. N., Kaiser, F., Salentin, S., Haupt, V. J., & Schroeder, M. (2021). PLIP 2021: Expanding the scope of the protein-ligand interaction profiler to DNA and RNA. Nucleic Acids Research, 49(W1), W530–W534.
pubmed: 33950214 pmcid: 8262720 doi: 10.1093/nar/gkab294
Persson, B., Kallberg, Y., Bray, J. E., Bruford, E., Dellaporta, S. L., Favia, A. D., Duarte, R. G., Jornvall, H., Kavanagh, K. L., Kedishvili, N., et al. (2009). The SDR (short-chain dehydrogenase/reductase and related enzymes) nomenclature initiative. Chemico-Biological Interactions, 178(1–3), 94–98.
pubmed: 19027726 doi: 10.1016/j.cbi.2008.10.040
Persson, B., Kallberg, Y., Oppermann, U., & Jörnvall, H. (2003). Coenzyme-based functional assignments of short-chain dehydrogenases/reductases (SDRs). Chemico-Biological Interactions, 143–144, 271–278.
pubmed: 12604213 doi: 10.1016/S0009-2797(02)00223-5
Filling, C., Berndt, K. D., Benach, J., Knapp, S., Prozorovski, T., Nordling, E., Ladenstein, R., Jornvall, H., & Oppermann, U. (2002). Critical residues for structure and catalysis in short-chain dehydrogenases/reductases. Journal of Biological Chemistry, 277(28), 25677–25684.
pubmed: 11976334 doi: 10.1074/jbc.M202160200
Schomburg, D., & Schomburg, I. (2013). NADP-retinol dehydrogenase 111300. In D. Schomburg & I. Schomburg (Eds.), Class 1 oxidoreductases: EC 1 (pp. 14–29). Springer.
doi: 10.1007/978-3-642-36265-1_6
Chatzi, C., Cunningham, T. J., & Duester, G. (2013). Investigation of retinoic acid function during embryonic brain development using retinaldehyde-rescued Rdh10 knockout mice. Developmental Dynamics, 242(9), 1056–1065.
pubmed: 23765990 doi: 10.1002/dvdy.23999
Sandell, L. L., Sanderson, B. W., Moiseyev, G., Johnson, T., Mushegian, A., Young, K., Rey, J. P., Ma, J. X., Staehling-Hampton, K., & Trainor, P. A. (2007). RDH10 is essential for synthesis of embryonic retinoic acid and is required for limb, craniofacial, and organ development. Genes & Development, 21(9), 1113–1124.
doi: 10.1101/gad.1533407
Dong, C. S., Zhang, W. L., Wang, Q., Li, Y. S., Wang, X., Zhang, M., & Liu, L. (2020). Crystal structures of cyanobacterial light-dependent protochlorophyllide oxidoreductase. Proceedings of the National Academy of Sciences of the United States of America, 117(15), 8455–8461.
pubmed: 32234783 pmcid: 7165480 doi: 10.1073/pnas.1920244117
Malakhov, M. P., Mattern, M. R., Malakhova, O. A., Drinker, M., Weeks, S. D., & Butt, T. R. (2004). SUMO fusions and SUMO-specific protease for efficient expression and purification of proteins. Journal of Structural and Functional Genomics, 5(1), 75–86.
pubmed: 15263846 doi: 10.1023/B:JSFG.0000029237.70316.52
Lee, S. H., & Altenberg, G. A. (2003). Expression of functional multidrug-resistance protein 1 in Saccharomyces cerevisiae: Effects of N- and C-terminal affinity tags. Biochemical and Biophysical Research Communications, 306(3), 644–649.
pubmed: 12810067 doi: 10.1016/S0006-291X(03)01029-5
Jin, W., Li, S., Chen, J., Liu, B., Li, J., Li, X., Zhang, F., Linhardt, R. J., & Zhong, W. (2018). Increased soluble heterologous expression of a rat brain 3-O-sulfotransferase 1 - A key enzyme for heparin biosynthesis. Protein Expression and Purification, 151, 23–29.
pubmed: 29894802 doi: 10.1016/j.pep.2018.06.007
Rodrigo, W. W., Dassanayake, R. S., Karunanayake, E. H., Gunawardene, Y. I., & Weerasena, O. V. (2014). Heterologous expression, chaperone mediated solubilization and purification of parasitic nematode-specific growth factor-like protein of Setaria digitata. Asian Pacific Journal of Tropical Medicine, 7(2), 85–92.
pubmed: 24461519 doi: 10.1016/S1995-7645(14)60001-8
Duan, X., Zhang, X., Shen, Z., Su, E., Zhao, L., & Pei, J. (2019). Efficient production of aggregation prone 4-alpha-glucanotransferase by combined use of molecular chaperones and chemical chaperones in Escherichia coli. Journal of Biotechnology, 292, 68–75.
pubmed: 30690094 doi: 10.1016/j.jbiotec.2019.01.014
Mitsuda, M., & Iwasaki, M. (2006). Improvement in the expression of CYP2B6 by co-expression with molecular chaperones GroES/EL in Escherichia coli. Protein Expression and Purification, 46(2), 401–405.
pubmed: 16310378 doi: 10.1016/j.pep.2005.10.017
Du, L., Yue, J., Zhu, Y., & Yin, S. (2022). Production of Indigo by recombinant Escherichia coli with expression of monooxygenase, tryptophanase, and molecular chaperone. Foods, 11(14), 2117.
pubmed: 35885360 pmcid: 9320885 doi: 10.3390/foods11142117
Tang, W., Dong, X., Meng, J., Feng, Y., Xie, M., Xu, H., & Song, P. (2021). Biochemical characterization and redesign of the coenzyme specificity of a novel monofunctional NAD
pubmed: 34022392 doi: 10.1016/j.pep.2021.105909
Tang, W., Lian, C., Si, Y., & Chang, J. (2021). Purification and characterization of (2R,3R)-2,3-butanediol dehydrogenase of the human pathogen Neisseria gonorrhoeae FA1090 produced in Escherichia coli. Molecular Biotechnology, 63(6), 491–501.
pubmed: 33763825 doi: 10.1007/s12033-021-00308-9
Tang, W., Wu, M., Qin, N., Liu, L., Meng, R., Wang, C., Wang, P., Zang, J., & Zhu, G. (2021). Crystal structures of NAD
pubmed: 33957092 doi: 10.1016/j.abb.2021.108898
Bonetta, R., & Valentino, G. (2020). Machine learning techniques for protein function prediction. Proteins, 88(3), 397–413.
pubmed: 31603244 doi: 10.1002/prot.25832
Rentzsch, R., & Orengo, C. A. (2009). Protein function prediction–the power of multiplicity. Trends in Biotechnology, 27(4), 210–219.
pubmed: 19251332 doi: 10.1016/j.tibtech.2009.01.002
Lee, S. A., Belyaeva, O. V., & Kedishvili, N. Y. (2009). Biochemical characterization of human epidermal retinol dehydrogenase 2. Chemico-Biological Interactions, 178(1–3), 182–187.
pubmed: 18926804 doi: 10.1016/j.cbi.2008.09.019
Wu, Y., Huang, T., Li, X., Shen, C., Ren, H., Wang, H., Wu, T., Fu, X., Deng, S., Feng, Z., et al. (2023). Retinol dehydrogenase 10 reduction mediated retinol metabolism disorder promotes diabetic cardiomyopathy in male mice. Nature Communications, 14(1), 1181.
pubmed: 36864033 pmcid: 9981688 doi: 10.1038/s41467-023-36837-x
Yang, M., Zhang, L., Tao, H. L., Sun, Y. C., Lou, Z. Z., Jia, W. Z., Hu, L. H., & Gao, C. H. (2019). OxiR specifically responds to isoniazid and regulates isoniazid susceptibility in mycobacteria. FEMS Microbiology Letters, 366(10), fnz109.
pubmed: 31125044 doi: 10.1093/femsle/fnz109
Zhao, S., Li, R., Li, Y., Chen, W., Zhang, Y., & Chen, G. (2012). Roles of vitamin A status and retinoids in glucose and fatty acid metabolism. Biochemistry and Cell Biology, 90(2), 142–152.
pubmed: 22292422 doi: 10.1139/o11-079
Lhor, M., & Salesse, C. (2014). Retinol dehydrogenases: Membrane-bound enzymes for the visual function. Biochemistry and Cell Biology, 92(6), 510–523.
pubmed: 25357265 doi: 10.1139/bcb-2014-0082

Auteurs

Wanggang Tang (W)

Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, School of Laboratory Medicine, Bengbu Medical College, Anhui, 233030, China. tangwanggang@bbmc.edu.cn.
Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, 233030, Anhui, China. tangwanggang@bbmc.edu.cn.

Chuanyue Gui (C)

Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, School of Laboratory Medicine, Bengbu Medical College, Anhui, 233030, China.
School of Public Health, Bengbu Medical College, Bengbu, 233030, Anhui, China.

Tingting Zhang (T)

Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, School of Laboratory Medicine, Bengbu Medical College, Anhui, 233030, China.
School of Public Health, Bengbu Medical College, Bengbu, 233030, Anhui, China.

Classifications MeSH