Predicting nitrogen excretion of cattle kept under tropical and subtropical conditions using semimechanistic models.
faecal fractions
faecal nitrogen
modelling
urine nitrogen
Journal
Journal of animal physiology and animal nutrition
ISSN: 1439-0396
Titre abrégé: J Anim Physiol Anim Nutr (Berl)
Pays: Germany
ID NLM: 101126979
Informations de publication
Date de publication:
21 Nov 2023
21 Nov 2023
Historique:
revised:
08
10
2023
received:
27
11
2022
accepted:
27
10
2023
medline:
22
11
2023
pubmed:
22
11
2023
entrez:
22
11
2023
Statut:
aheadofprint
Résumé
The present study aims at evaluating whether current semimechanistic models developed for temperate cattle systems can be adopted for cattle under (sub-) tropical husbandry systems to adequately (accurately and precisely) predict total nitrogen (TN), urine nitrogen (UN), faecal nitrogen (FN) excretion and its partition into different FN fractions. Selected models were built based on the feeding recommendations for ruminants of the British (Model A), German (Model G) and French (INRA; Model I) system. Model evaluation was conducted using eight nitrogen balance studies performed in El Salvador, Kenya and Peru (n = 392 individual observations including lactating cows, heifers and steers). Concordance correlation coefficient, root mean square errors (RMSE), and mean biases were estimated to evaluate the models' adequacy in predicting nitrogen excretion. Input variables causing greatest variation in nitrogen excretion prediction were identified by a sensitivity analysis and adjusted. Model G was able to adequately (i.e., RMSE of <25% of observed mean, systematic error of <5% of the mean square error) predict TN excretion through a compensation between overestimation of UN excretion and underestimation of FN excretion. None of the models were able to adequately predict UN, FN, and different FN fractions. Model I adequately predicted FN (RMSE = 18%) when duodenal microbial crude protein flow was increased, and the intercept used to predict FN excretion was reduced from 4.30 to 3.82 g of nitrogen per kilogram of dry matter intake. These adjustments, however, were not sufficient to predict adequately UN excretion (RMSE = 38%), individual FN fractions (RMSE > 56%), and TN (RMSE = 22%) excretion, by Model I.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Federal Ministry for Economic Cooperation and Development
ID : 2014.0690.9
Organisme : Fondecyt, Peru
ID : 129-2016
Informations de copyright
© 2023 The Authors. Journal of Animal Physiology and Animal Nutrition published by Wiley-VCH GmbH.
Références
Agricultural and Food Research Council. (1993). Energy and protein requirements of ruminants: An advisory manual prepared by technical committee on responses to nutrients. (p. 159). CAB International. https://agris.fao.org/agris-search/search.do?recordID=GB9406276
Aiple, K. P., Steingass, H., & Menke, K. H. (1992). Suitability of a buffered faecal suspension as the inoculum in the Hohenheim gas test. Journal of Animal Physiology and Animal Nutrition, 67(1-5), 57-66. https://doi.org/10.1111/j.1439-0396.1992.tb00583.x
Ali, A. I. M., Wassie, S. E., Korir, D., Goopy, J. P., Merbold, L., Butterbach-Bahl, K., Dickhoefer, U., & Schlecht, E. (2019a). Digesta passage and nutrient digestibility in Boran steers at low feed intake levels. Journal of Animal Physiology and Animal Nutrition, 103(5), 1325-1337. https://doi.org/10.1111/jpn.13158
Ali, A. I. M., Wassie, S. E., Korir, D., Merbold, L., Goopy, J. P., Butterbach-Bahl, K., Dickhoefer, U., & Schlecht, E. (2019b). Supplementing tropical cattle for improved nutrient utilization and reduced enteric methane emissions. Animals: An Open Access Journal from MDPI, 9(5), 210. https://doi.org/10.3390/ani9050210
Aloba, T. (2022). Effects of ensiling conditions on the nutritional quality of forage legumes and their impacts on rumen fermentation and nutrient utilization by cattle [Dissertation to obtain the doctoral degree of Agricultural Sciences]. University of Hohenheim.
Association of Official Analytical Chemists. (2005). Official methods of analysis of AOAC International, Agricultural chemicals, contaminants, drugs (Vol. 1, 18th ed.). AOAC International. https://repositorioinstitucional.ceu.es/handle/10637/3158
Arriaga, H., Pinto, M., Calsamiglia, S., & Merino, P. (2009). Nutritional and management strategies on nitrogen and phosphorus use efficiency of lactating dairy cattle on commercial farms: An environmental perspective. Journal of Dairy Science, 92(1), 204-215. https://doi.org/10.3168/jds.2008-1304
Bateki, C. A., & Dickhoefer, U. (2019). Predicting dry matter intake using conceptual models for cattle kept under tropical and subtropical conditions. Journal of Animal Science, 97(9), 3727-3740. https://doi.org/10.1093/jas/skz226
Bateki, C. A., & Dickhoefer, U. (2020). Evaluation of the modified LIVestock SIMulator for stall-fed dairy cattle in the Tropics. Animals: An Open Access Journal from MDPI, 10(5), 816. https://doi.org/10.3390/ani10050816
Bibby, J. M., & Toutenburg, H. (1977). Prediction and improved estimation in linear models (p. 201). John Wiley and Sons.
Bougouin, A., Hristov, A., Dijkstra, J., Aguerre, M. J., Ahvenjärvi, S., Arndt, C., Bannink, A., Bayat, A. R., Benchaar, C., Boland, T., Brown, W. E., Crompton, L. A., Dehareng, F., Dufrasne, I., Eugène, M., Froidmont, E., van Gastelen, S., Garnsworthy, P. C., Halmemies-Beauchet-Filleau, A., … Kebreab, E. (2022). Prediction of nitrogen excretion from data on dairy cows fed a wide range of diets compiled in an intercontinental database: A meta-analysis. Journal of Dairy Science, 105(9), 7462-7481. https://doi.org/10.3168/jds.2021-20885
Castro-Montoya, J., Gownipuram, R., Mendoza, M., Solano, N., López, F., Dickhöfer, U., & Corea, E. E. (2019). Effects of feeding tropical forage legumes on nutrients digestibility, nitrogen partitioning and performance of crossbred milking cows. Animal Feed Science and Technology, 247, 32-40. https://doi.org/10.1016/j.anifeedsci.2018.10.017
Corea, E. E., Aguilar, J. M., Alas, N. P., Alas, E. A., Flores, J. M., & Broderick, G. A. (2017). Effects of dietary cowpea (Vigna sinensis) hay and protein level on milk yield, milk composition, N efficiency and profitability of dairy cows. Animal Feed Science and Technology, 226, 48-55. https://doi.org/10.1016/j.anifeedsci.2017.02.002
Corea, E. E., Castro-Montoya, J., Mendoza, M. V., López, F. M., Martinez, A., Alvarado, M. E., Moreno, C., Broderick, G. A., & Dickhoefer, U. (2020). Effect of forage source and dietary rumen-undegradable protein on nutrient use and growth in dairy heifers. Animal Feed Science and Technology, 269, 114658. https://doi.org/10.1016/j.anifeedsci.2020.114658
Dijkstra, J., France, J., Assis, A. G., Neal, H. D. S. C., Campos, O. F., & Aroeira, L. J. M. (1996). Simulation of digestion in cattle fed sugarcane: Prediction of nutrient supply for milk production with locally available supplements. The Journal of Agricultural Science, 127(2), 247-260. https://doi.org/10.1017/S0021859600078023
Dijkstra, J., Oenema, O., van Groenigen, J. W., Spek, J. W., van Vuuren, A. M., & Bannink, A. (2013). Diet effects on urine composition of cattle and N2O emissions. Animal, 7(s2), 292-302. https://doi.org/10.1017/S1751731113000578
Gesellschaft für Ernährungsphysiologie. (2001). Empfehlungen zur Energie- und Nährstoffversorgung der Milchkühe und Aufzuchtrinder. DLG-Verlag.
Glindemann, T., Tas, B. M., Wang, C., Alvers, S., & Susenbeth, A. (2009). Evaluation of titanium dioxide as an inert marker for estimating faecal excretion in grazing sheep. Animal Feed Science and Technology, 152, 186-197. https://doi.org/10.1016/j.anifeedsci.2009.04.010
Herrero, M., Fawcett, R., & Jessop, N. (2002). Predicting intake and nutrient supply of tropical and temperate diets for ruminants using a simple dynamic model of digestion (pp. 47-59). Institute of Ecology and Resource Management, University of Edinburgh.
Hristov, A. N., Bannink, A., Crompton, L. A., Huhtanen, P., Kreuzer, M., McGee, M., Nozière, P., Reynolds, C. K., Bayat, A. R., Yáñez-Ruiz, D. R., Dijkstra, J., Kebreab, E., Schwarm, A., Shingfield, K. J., & Yu, Z. (2019). Invited review: Nitrogen in ruminant nutrition: A review of measurement techniques. Journal of Dairy Science, 102(7), 5811-5852. https://doi.org/10.3168/jds.2018-15829
Institut National de la Recherche Agronomique. (2019). INRA feeding system for ruminants. Wageningen Academic Publishers. https://www.wageningenacademic.com/doi/book/10.3920/978-90-8686-292-4
INRAE, CIRAD, AFZ, and FAO. (2012). Feedipedia: An on-line encyclopedia of animal feeds. https://www.feedipedia.org/
Johnson, A. C. B., Reed, K. F., & Kebreab, E. (2016). Short communication: Evaluation of nitrogen excretion equations from cattle. Journal of Dairy Science, 99(9), 7669-7678. https://doi.org/10.3168/jds.2015-10730
Jost, D. I., Joergensen, R. G., & Sundrum, A. (2013). Effect of cattle faeces with different microbial biomass content on soil properties, gaseous emissions and plant growth. Biology and Fertility of Soils, 49, 61-70. https://doi.org/10.1007/s00374-012-0697-y
Van Keulen, J., & Young, B. A. (1977). Evaluation of acid-insoluble ash as a natural marker in ruminant digestibility studies. Journal of Animal Science, 44, 282-287. https://doi.org/10.2527/jas1977.442282x
Lebzien, P., Voigt, J., Gabel, M., & Gädeken, D. (1996). Zur Schätzung der Menge an nutzbarem Rohprotein am Duodenum von Milchkühen. Journal of Animal Physiology and Animal Nutrition, 76(1-5), 218-223. https://doi.org/10.1111/j.1439-0396.1996.tb00692.x
Licitra, G., Hernandez, T. M., & Van Soest, P. J. (1996). Standardization of procedures for nitrogen fractionation of ruminant feeds. Animal Feed Science and Technology, 57(4), 347-358. https://doi.org/10.1016/0377-8401(95)00837-3
Lin, L. I.-K. (1989). A concordance correlation coefficient to evaluate reproducibility. Biometrics, 45(1), 255-268.
Mason, V. C. (1969). Some observations on the distribution and origin of nitrogen in sheep faeces. The Journal of Agricultural Science, 73(1), 99-111. https://doi.org/10.1017/S0021859600024175
Mason, V. C., & Frederiksen, J. H. (1979). Partition of the nitrogen in sheep faeces with detergent solutions, and its application to the estimation of the true digestibility of dietary nitrogen and the excretion of non-dietary faecal nitrogen. Zeitschrift fur Tierphysiologie, Tierernahrung und Futtermittelkunde, 41(3), 121-131. https://doi.org/10.1111/j.1439-0396.1978.tb00573.x
Menke, K. H., & Steingass, H. (1987). Estimation of the energetic feed value from chemical analysis, and in vitro gas production using rumen fluid. Animal Research and Development, 28, 7-55.
Nennich, T. D., Harrison, J. H., VanWieringen, L. M., Meyer, D., Heinrichs, A. J., Weiss, W. P., St-Pierre, N. R., Kincaid, R. L., Davidson, D. L., & Block, E. (2005). Prediction of manure and nutrient excretion from dairy cattle. Journal of Dairy Science, 88(10), 3721-3733. https://doi.org/10.3168/jds.S0022-0302(05)73058-7
Reed, K. F., Moraes, L. E., Casper, D. P., & Kebreab, E. (2015). Predicting nitrogen excretion from cattle. Journal of Dairy Science, 98(5), 3025-3035. https://doi.org/10.3168/jds.2014-8397
Rotz, C. A. (2004). Management to reduce nitrogen losses in animal production. Journal of Animal Science, 82(Suppl. 13), 119-137. https://doi.org/10.2527/2004.8213_supplE119x
Rufino, M. C., Herrero, M., Van Wijk, M. T., Hemerik, L., De Ridder, N., & Giller, K. E. (2009). Lifetime productivity of dairy cows in smallholder farming systems of the Central highlands of Kenya. Animal, 3, 1044-1056. https://doi.org/10.1017/S1751731109004248
Sainz-Sánchez, P., Rojas, G., Castro-Montoya, J., Gómez, C. A., & Dickhoefer, U. (2018). Effects of type of concentrate feed and timing of supplementation on performance of lactating dairy cows grazing an Alfalfa-Rye-Grass Sward in the Peruvian highlands. [Tropentag: "Global food security and food safety: The role of universities"]. Ghent, Belgium.
Sainz-Sanchez, P. A., Korir, D., Ali, A. I. M., Merbold, L., Goopy, J., Schlecht, E., & Dickhoefer, U. (2019). Intake, apparent digestibility, and nitrogen balance in steers fed with different grasses grown alone or intercropped with Lablab purpureus. ILRI.
Salah, N., Sauvant, D., & Archimède, H. (2015). Response of growing ruminants to diet in warm climates: a meta-analysis. Animal, 9(5), 822-830. https://doi.org/10.1017/S175173111400322X
Salazar-Cubillas, K., & Dickhoefer, U. (2021). Estimating the proportion of in situ rumen-undegraded crude protein from chemical crude protein and fiber fractions in tropical forage grasses and legumes. Animal Feed Science and Technology, 282, 115122. https://doi.org/10.1016/j.anifeedsci.2021.115122
Schouten, M., Verwaart, T., & Heijman, W. (2014). Comparing two sensitivity analysis approaches for two scenarios with a spatially explicit rural agent-based model. Environmental Modelling & Software, 54, 196-210. https://doi.org/10.1016/j.envsoft.2014.01.003
Shannak, S., Südekum, K.-H., & Susenbeth, A. (2000). Estimating ruminal crude protein degradation with in situ and chemical fractionation procedures. Animal Feed Science and Technology, 85(3), 195-214. https://doi.org/10.1016/S0377-8401(00)00146-2
Sniffen, C. J., O'connor, J. D., Van Soest, P. J., Fox, D. G., & Russell, J. B. (1992). A net carbohydrate and protein system for evaluating cattle diets: II. Journal of Animal Science, 70(11), 3562-3577. https://doi.org/10.2527/1992.70113562x
Van Soest, P. J. (1994). Nutritional ecology of the ruminant (pp. 112). Cornell University Press.
Spanghero, M., & Kowalski, Z. M. (1997). Critical analysis of N balance experiments with lactating cows. Livestock Production Science, 52(2), 113-122. https://doi.org/10.1016/S0301-6226(97)00138-3
Tamminga, S. (1992). Nutrition management of dairy cows as a contribution to pollution control. Journal of Dairy Science, 75(1), 345-357. https://doi.org/10.3168/jds.S0022-0302(92)77770-4
Tas, B. M., & Susenbeth, A. (2007). Urinary purine derivates excretion as an indicator of in vivo microbial N flow in cattle: A review. Livestock Science, 111(3), 181-192. https://doi.org/10.1016/j.livsci.2007.05.010
Tedeschi, L. O. (2006). Assessment of the adequacy of mathematical models. Agricultural Systems, 89(2-3), 225-247. https://doi.org/10.1016/j.agsy.2005.11.004
Tedeschi, L. O., Chalupa, W., Janczewski, E., Fox, D. G., Sniffen, C., Munson, R., Kononoff, P. J., & Boston, R. (2008). Evaluation and application of the CPM Dairy Nutrition model. The Journal of Agricultural Science, 146, 171-182. https://doi.org/10.1017/S0021859607007587
Titgemeyer, E. C., Armendariz, C. K., Bindel, D. J., Greenwood, R. H., & Löest, C. A. (2001). Evaluation of titanium dioxide as a digestibility marker for cattle. Journal of Animal Science, 79(4), 1059-1063. https://doi.org/10.2527/2001.7941059x
Valadares, R. F. D., Broderick, G. A., Filho, S. C. V., & Clayton, M. K. (1999). Effect of replacing alfalfa silage with high moisture corn on ruminal protein synthesis estimated from excretion of total purine derivatives. Journal of Dairy Science, 82, 2686-2696. https://doi.org/10.3168/jds.S0022-0302(99)75525-6
Verband Deutscher Landwirtschaftlicher Untersuchungs- und Forschungsanstalten. (2012). Handbuch der Landwirtschaftlichen Versuchs- und Untersuchungsmethodik: (Methodenbuch III). Die chemische Untersuchung von Futtermitteln. VDLUFA-Verlag, Darmstadt.
Wassie, S. E. (2019). Nutritional effects on microbial protein synthesis and nitrogen balance in cattle offered low-quality tropical forages [Dissertation to obtain the doctoral degree of Agricultural Sciences]. University of Hohenheim.
Wassie, S. E., Ali, A. I. M., Korir, D., Butterbach-Bahl, K., Goopy, J., Merbold, L., Schlecht, E., & Dickhoefer, U. (2019). Effects of feed intake level on efficiency of microbial protein synthesis and nitrogen balance in Boran steers consuming tropical poor-quality forage. Archives of Animal Nutrition, 73(2), 140-157. https://doi.org/10.1080/1745039X.2019.157234
Wilkerson, V. A., Mertens, D. R., & Casper, D. P. (1997). Prediction of excretion of manure and nitrogen by Holstein dairy cattle. Journal of Dairy Science, 80(12), 3193-3204. https://doi.org/10.3168/jds.S0022-0302(97)76292-1