Exchangeable Self-Assembled Lanthanide Antennas for PLIM Microscopy.
Bioimaging
Lanthanide Antenna
Luminescence
PLIM
Photostability
Journal
Angewandte Chemie (International ed. in English)
ISSN: 1521-3773
Titre abrégé: Angew Chem Int Ed Engl
Pays: Germany
ID NLM: 0370543
Informations de publication
Date de publication:
22 Nov 2023
22 Nov 2023
Historique:
received:
28
09
2023
pubmed:
22
11
2023
medline:
22
11
2023
entrez:
22
11
2023
Statut:
aheadofprint
Résumé
Lanthanides have unique photoluminescence (PL) emission properties, including very long PL lifetimes. This makes them ideal for biological imaging applications, especially using PL lifetime imaging microscopy (PLIM). PLIM is an inherently multidimensional technique with exceptional advantages for quantitative biological imaging. Unfortunately, due to the required prolonged acquisitions times, photobleaching of lanthanide PL emission currently constitutes one of the main drawbacks of PLIM. In this study, we report a small aqueous-soluble, lanthanide antenna, 8-methoxy-2-oxo-1,2,4,5-tetrahydrocyclopenta[de]quinoline-3-phosphonic acid, PAnt, specifically designed to dynamically interact with lanthanide ions, serving as exchangeable dye aimed at mitigating photobleaching in PLIM microscopy in cellulo. Thus, self-assembled lanthanide complexes that may be photobleached during image acquisition are continuously replenished by intact lanthanide antennas from a large reservoir. Remarkably, our self-assembled lanthanide complex clearly demonstrated a significant reduction of PL photobleaching when compared to well-established lanthanide cryptates, used for bioimaging. This concept of exchangeable lanthanide antennas opens new possibilities for quantitative PLIM bioimaging.
Identifiants
pubmed: 37991081
doi: 10.1002/anie.202314595
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e202314595Subventions
Organisme : Agencia Estatal de Investigación
ID : PID2020-114256RB-I00
Organisme : Agencia Estatal de Investigación
ID : PID2019-104366RB-C22
Organisme : Consejería de Transformación Económica, Industria, Conocimiento y Universidades
ID : P21_00212
Organisme : Consejería de Transformación Económica, Industria, Conocimiento y Universidades
ID : A-FQM-386-UGR20
Organisme : Consejería de Transformación Económica, Industria, Conocimiento y Universidades
ID : 2021/00627/001-FEDER_UJA_2020
Organisme : Consejo Superior de Investigaciones Científicas
ID : 202180E073
Informations de copyright
© 2023 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.
Références
J.-C. G. Bünzli, S. V. Eliseeva, in Lanthanide Luminescence: Photophysical, Analytical and Biological Aspects (Eds.: P. Hänninen, H. Härmä), Springer, Berlin, Heidelberg, 2011, pp. 1-45;
U. Cho, J. K. Chen, Cell Chem. Biol. 2020, 27, 921-936.
F. Degorce, A. Card, S. Soh, E. Trinquet, G. P. Knapik, B. Xie, Curr. Chem. Genomics 2018, 3, 22-32;
E. Garcia-Fernandez, S. Pernagallo, J. A. González-Vera, M. J. Ruedas-Rama, J. J. Díaz-Mochón, A. Orte, in Fluorescence in Industry, Vol. 18 (Ed.: B. Pedras), Springer International Publishing, Cham, 2019, pp. 213-267.
I. Hemmilä, S. Dakubu, V.-M. Mukkala, H. Siitari, T. Lövgren, Anal. Biochem. 1984, 137, 335-343.
J. Karvinen, P. Hurskainen, S. Gopalakrishnan, D. Burns, U. Warrior, I. Hemmilä, SLAS Discovery 2002, 7, 223-231.
J. C. Bunzli, Interface Focus 2013, 3, 20130032;
J. Monteiro, Molecules 2020, 25, 2089;
J. Yu, D. Parker, R. Pal, R. A. Poole, M. J. Cann, J. Am. Chem. Soc. 2006, 128, 2294-2299;
X. Zhu, X. Wang, H. Zhang, F. Zhang, Angew. Chem. Int. Ed. 2022, 61, e202209378.
G. Muller, Dalton Trans. 2009, 9692-9707;
M. H. V. Werts, Sci. Prog. 2005, 88, 101-131.
K. Y. Zhang, Q. Yu, H. Wei, S. Liu, Q. Zhao, W. Huang, Chem. Rev. 2018, 118, 1770-1839;
P. S. Chelushkin, S. P. Tunik, in Progress in Photon Science: Recent Advances (Eds.: K. Yamanouchi, S. Tunik, V. Makarov), Springer International Publishing, Cham, 2019, pp. 109-128.
Q. Wu, K. Y. Zhang, P. Dai, H. Zhu, Y. Wang, L. Song, L. Wang, S. Liu, Q. Zhao, W. Huang, J. Am. Chem. Soc. 2020, 142, 1057-1064;
J. Zhou, J. Li, K. Y. Zhang, S. Liu, Q. Zhao, Coord. Chem. Rev. 2022, 453, 214334.
T. Emelina, A. Mirochnik, I. Kalinovskaya, J. Lumin. 2021, 238, 118274;
Y. H. Pham, V. A. Trush, A. N. Carneiro Neto, M. Korabik, J. Sokolnicki, M. Weselski, O. L. Malta, V. M. Amirkhanov, P. Gawryszewska, J. Mater. Chem. C 2020, 8, 9993-10009.
M. M. Nolasco, P. M. Vaz, V. T. Freitas, P. P. Lima, P. S. André, R. A. S. Ferreira, P. D. Vaz, P. Ribeiro-Claro, L. D. Carlos, J. Mater. Chem. A 2013, 1, 7339-7350;
M. Fernandes, V. de Zea Bermudez, R. A. Sá Ferreira, L. D. Carlos, A. Charas, J. Morgado, M. M. Silva, M. J. Smith, Chem. Mater. 2007, 19, 3892-3901.
M. Glogger, D. Wang, J. Kompa, A. Balakrishnan, J. Hiblot, H. D. Barth, K. Johnsson, M. Heilemann, ACS Nano 2022, 16, 17991-17997;
J. Kwon, M. S. Elgawish, S.-H. Shim, Adv. Sci. 2022, 9, 2101817;
J. Chen, C. Wang, W. Liu, Q. Qiao, H. Qi, W. Zhou, N. Xu, J. Li, H. Piao, D. Tan, X. Liu, Z. Xu, Angew. Chem. Int. Ed. 2021, 60, 25104-25113;
J. Kompa, J. Bruins, M. Glogger, J. Wilhelm, M. S. Frei, M. Tarnawski, E. D'Este, M. Heilemann, J. Hiblot, K. Johnsson, J. Am. Chem. Soc. 2023, 145, 3075-3083;
P. Carravilla, A. Dasgupta, G. Zhurgenbayeva, D. I. Danylchuk, A. S. Klymchenko, E. Sezgin, C. Eggeling, Biophys. Rep. 2021, 1, 100023;
C. Spahn, J. B. Grimm, L. D. Lavis, M. Lampe, M. Heilemann, Nano Lett. 2019, 19, 500-505.
M. R. George, C. A. Golden, M. C. Grossel, R. J. Curry, Inorg. Chem. 2006, 45, 1739-1744;
D. Parker, J. D. Fradgley, K. L. Wong, Chem. Soc. Rev. 2021, 50, 8193-8213;
F. Fueyo-González, E. Garcia-Fernandez, D. Martinez, L. Infantes, A. Orte, J. A. González-Vera, R. Herranz, Chem. Commun. 2020, 56, 5484-5487.
N. Wartenberg, O. Raccurt, E. Bourgeat-Lami, D. Imbert, M. Mazzanti, Chem. Eur. J. 2013, 19, 3477-3482.
F. Fueyo-González, L. Espinar-Barranco, R. Herranz, I. Alkorta, L. Crovetto, M. Fribourg, J. M. Paredes, A. Orte, J. A. González-Vera, ACS Sens. 2022, 7, 322-330.
J. Wang, W. Lin, W. Li, Biomaterials 2013, 34, 7429-7436;
Y.-S. Yang, Z.-H. Yuan, X.-P. Zhang, J.-F. Xu, P.-C. Lv, H.-L. Zhu, J. Mater. Chem. B 2019, 7, 2911-2914.
S. Santhosh Babu, J. Aimi, H. Ozawa, N. Shirahata, A. Saeki, S. Seki, A. Ajayaghosh, H. Möhwald, T. Nakanishi, Angew. Chem. Int. Ed. 2012, 51, 3391-3395.
M. S. Tremblay, M. Halim, D. Sames, J. Am. Chem. Soc. 2007, 129, 7570-7577.
O. Kotova, S. Comby, C. Lincheneau, T. Gunnlaugsson, Chem. Sci. 2017, 8, 3419-3426.
A. Balamurugan, A. K. Gupta, R. Boomishankar, M. Lakshmipathi Reddy, M. Jayakannan, ChemPlusChem 2013, 78, 737-745.
T. Nishioka, J. Yuan, Y. Yamamoto, K. Sumitomo, Z. Wang, K. Hashino, C. Hosoya, K. Ikawa, G. Wang, K. Matsumoto, Inorg. Chem. 2006, 45, 4088-4096;
U. Cho, D. P. Riordan, P. Ciepla, K. S. Kocherlakota, J. K. Chen, P. B. Harbury, Nat. Chem. Biol. 2018, 14, 15-21.