Probing Renal Microstructure and Function with Advanced Diffusion MRI: Concepts, Applications, Challenges, and Future Directions.

diffusion kurtosis imaging diffusion tensor imaging intravoxel incoherent motion kidney non-Gaussian diffusion renal diffusion-weighted imaging

Journal

Journal of magnetic resonance imaging : JMRI
ISSN: 1522-2586
Titre abrégé: J Magn Reson Imaging
Pays: United States
ID NLM: 9105850

Informations de publication

Date de publication:
22 Nov 2023
Historique:
revised: 26 10 2023
received: 27 08 2023
accepted: 27 10 2023
medline: 22 11 2023
pubmed: 22 11 2023
entrez: 22 11 2023
Statut: aheadofprint

Résumé

Diffusion measurements in the kidney are affected not only by renal microstructure but also by physiological processes (i.e., glomerular filtration, water reabsorption, and urine formation). Because of the superposition of passive tissue diffusion, blood perfusion, and tubular pre-urine flow, the limitations of the monoexponential apparent diffusion coefficient (ADC) model in assessing pathophysiological changes in renal tissue are becoming apparent and motivate the development of more advanced diffusion-weighted imaging (DWI) variants. These approaches take advantage of the fact that the length scale probed in DWI measurements can be adjusted by experimental parameters, including diffusion-weighting, diffusion gradient directions and diffusion time. This forms the basis by which advanced DWI models can be used to capture not only passive diffusion effects, but also microcirculation, compartmentalization, tissue anisotropy. In this review, we provide a comprehensive overview of the recent advancements in the field of renal DWI. Following a short introduction on renal structure and physiology, we present the key methodological approaches for the acquisition and analysis of renal DWI data, including intravoxel incoherent motion (IVIM), diffusion tensor imaging (DTI), non-Gaussian diffusion, and hybrid IVIM-DTI. We then briefly summarize the applications of these methods in chronic kidney disease and renal allograft dysfunction. Finally, we discuss the challenges and potential avenues for further development of renal DWI. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY: Stage 2.

Identifiants

pubmed: 37991093
doi: 10.1002/jmri.29127
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : NCI NIH HHS
ID : R01CA245671
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK122734
Pays : United States
Organisme : NIA NIH HHS
ID : R21AG062104
Pays : United States

Informations de copyright

© 2023 International Society for Magnetic Resonance in Medicine.

Références

Kovesdy CP. Epidemiology of chronic kidney disease: An update 2022. Kidney Int Suppl 2011;2022(12):7-11.
Quick Reference on UACR & GFR In Evaluating Patients with Diabetes for Kidney Disease. https://www.niddk.nih.gov/health-information/professionals/advanced-search/quick-reference-uacr-gfr.
Luis-Lima S, Porrini E. An overview of errors and flaws of estimated GFR versus true GFR in patients with diabetes mellitus. Nephron 2016;136:287-291.
Kretzler M, Cohen CD, Doran P, et al. Repuncturing the renal biopsy: Strategies for molecular diagnosis in nephrology. J Am Soc Nephrol 2002;13:1961-1972.
Prasad PV. Functional MRI of the kidney: Tools for translational studies of pathophysiology of renal disease. Am J Physiol Renal Physiol 2006;290:F958-F974.
Caroli A, Schneider M, Friedli I, et al. Diffusion-weighted magnetic resonance imaging to assess diffuse renal pathology: A systematic review and statement paper. Nephrol Dial Transplant 2018;33(Suppl 2):ii29-ii40.
Jiang K, Ferguson CM, Lerman LO. Noninvasive assessment of renal fibrosis by magnetic resonance imaging and ultrasound techniques. Transl Res 2019;209:105-120.
Bane O, Seeliger E, Cox E, et al. Renal MRI: From nephron to NMR signal. J Magn Reson Imaging 2023;58:1660-1679. https://doi.org/10.1002/jmri.28828.
Francis ST, Selby NM, Taal MW. Magnetic resonance imaging to evaluate kidney structure, function, and pathology: Moving toward clinical application. Am J Kidney Dis 2023;82:491-504.
Winter KS, Helck AD, Ingrisch M, et al. Dynamic contrast-enhanced magnetic resonance imaging assessment of kidney function and renal masses: Single slice versus whole organ/tumor. Invest Radiol 2014;49:720-727.
Kaewlai R, Abujudeh H. Nephrogenic systemic fibrosis. AJR Am J Roentgenol 2012;199:W17-W23.
Xu X, Palmer SL, Lin X, et al. Diffusion-weighted imaging and pathology of chronic kidney disease: Initial study. Abdom Radiol 2018;43:1749-1755.
Inoue T, Kozawa E, Okada H, et al. Noninvasive evaluation of kidney hypoxia and fibrosis using magnetic resonance imaging. J Am Soc Nephrol 2011;22:1429-1434.
Lanzman RS, Ljimani A, Pentang G, et al. Kidney transplant: Functional assessment with diffusion-tensor MR imaging at 3T. Radiology 2013;266:218-225.
Namimoto T, Yamashita Y, Mitsuzaki K, Nakayama Y, Tang Y, Takahashi M. Measurement of the apparent diffusion coefficient in diffuse renal disease by diffusion-weighted echo-planar MR imaging. J Magn Reson Imaging 1999;9:832-837.
Thoeny HC, Keyzer FD, Oyen RH, Peeters RR. Diffusion-weighted MR imaging of kidneys in healthy volunteers and patients with parenchymal diseases: Initial experience. Radiology 2005;235:911-917.
Yalçin-Şafak K, Ayyildiz M, Ünel SY, Umarusman-Tanju N, Akça A, Baysal T. The relationship of ADC values of renal parenchyma with CKD stage and serum creatinine levels. Eur J Radiol Open 2015;3:8-11.
Emre T, Kiliçkesmez Ö, Büker A, İnal BB, Doğan H, Ecder T. Renal function and diffusion-weighted imaging: A new method to diagnose kidney failure before losing half function. Radiol Med 2016;121:163-172.
Zhao J, Wang ZJ, Liu M, et al. Assessment of renal fibrosis in chronic kidney disease using diffusion-weighted MRI. Clin Radiol 2014;69:1117-1122.
Friedli I, Crowe LA, de Perrot T, et al. Comparison of readout-segmented and conventional single-shot for echo-planar diffusion-weighted imaging in the assessment of kidney interstitial fibrosis. J Magn Reson Imaging 2017;46:1631-1640.
Jerome NP, Caroli A, Ljimani A. Renal diffusion-weighted imaging (DWI) for apparent diffusion coefficient (ADC), Intravoxel incoherent motion (IVIM), and diffusion tensor imaging (DTI): Basic concepts. In: Pohlmann A, Niendorf T, editors. Preclinical MRI of the kidney: Methods and protocols. New York, NY: Springer US; 2021. p 187-204.
Brenner BM, Levine SA. Brenner and Rector's the kidney. Vol 2. 8th ed.: Saunders Elsevier, Philadelphia; 2008.
Fioretto P, Sutherland DER, Najafian B, Mauer M. Remodeling of renal interstitial and tubular lesions in pancreas transplant recipients. Kidney Int 2006;69:907-912.
Niendorf T, Pohlmann A, Arakelyan K, et al. How BOLD is blood oxygenation level-dependent (BOLD) magnetic resonance imaging of the kidney? Opportunities, challenges and future directions. Acta Physiol 2015;213:19-38.
Morozov D, Parvin N, Charlton JR, Bennett KM. Mapping kidney tubule diameter ex vivo by diffusion MRI. Am J Physiol Renal Physiol 2021;320:F934-F946.
Zeisberg M, Kalluri R. Physiology of the renal Interstitium. Clin J Am Soc Nephrol 2015;10:1831-1840.
Becker GJ, Hewitson TD. The role of tubulointerstitial injury in chronic renal failure. Curr Opin Nephrol Hypertens 2000;9:133-138.
Srivastava A, Palsson R, Kaze AD, et al. The prognostic value of histopathologic lesions in native kidney biopsy specimens: Results from the Boston kidney biopsy cohort study. J Am Soc Nephrol 2018;29:2213-2224.
Boor P, Perkuhn M, Weibrecht M, et al. Diffusion-weighted MRI does not reflect kidney fibrosis in a rat model of fibrosis. J Magn Reson Imaging 2015;42:990-998.
Kaufman DP, Basit H, Knohl SJ. Physiology, glomerular filtration rate. Treasure Island (FL): StatPearls Publishing; 2023.
Dalal R, Bruss ZS, Sehdev JS. Physiology, renal blood flow and filtration. Treasure Island (FL): StatPearls Publishing; 2023.
Periquito J d S, Paul K, Huelnhagen T, et al. Diffusion-weighted renal MRI at 9.4 tesla using RARE to improve anatomical integrity. Sci Rep 2019;9:19723.
Deng J, Miller FH, Salem R, Omary RA, Larson AC. Multishot diffusion-weighted PROPELLER magnetic resonance imaging of the abdomen. Invest Radiol 2006;41:769-775.
Deng J, Omary RA, Larson AC. Multishot diffusion-weighted SPLICE PROPELLER MRI of the abdomen. Magn Reson Med 2008;59:947-953.
Friedli I, Crowe LA, Viallon M, et al. Improvement of renal diffusion-weighted magnetic resonance imaging with readout-segmented echo-planar imaging at 3T. Magn Reson Imaging 2015;33:701-708.
Wu C-J, Wang Q, Zhang J, et al. Readout-segmented echo-planar imaging in diffusion-weighted imaging of the kidney: Comparison with single-shot echo-planar imaging in image quality. Abdom Radiol (NY) 2016;41:100-108.
He Y-L, Hausmann D, Morelli JN, Attenberger UI, Schoenberg SO, Riffel P. Renal zoomed EPI-DWI with spatially-selective radiofrequency excitation pulses in two dimensions. Eur J Radiol 2016;85:1773-1777.
Liu W, Liu H, Xie S, et al. Comparing the clinical utility of single-shot, readout-segmented and zoomit echo-planar imaging in diffusion-weighted imaging of the kidney at 3 T. Sci Rep 2022;12:12389.
Holland D, Kuperman JM, Dale AM. Efficient correction of inhomogeneous static magnetic field-induced distortion in Echo planar imaging. Neuroimage 2010;50:175-183.
Lim RP, Lim JC, Teruel JR, et al. Geometric distortion correction of renal diffusion tensor imaging using the reversed gradient method. J Comput Assist Tomogr 2021;45:218-223.
Kenkel D, Barth BK, Piccirelli M, et al. Simultaneous multislice diffusion-weighted imaging of the kidney: A systematic analysis of image quality. Invest Radiol 2017;52:163-169.
Phi Van VD, Becker AS, Ciritsis A, Reiner CS, Boss A. Intravoxel incoherent motion analysis of abdominal organs: Application of simultaneous multislice acquisition. Invest Radiol 2018;53:179-185.
Tavakoli A, Krammer J, Attenberger UI, et al. Simultaneous multislice diffusion-weighted imaging of the kidneys at 3 T. Invest Radiol 2020;55:233-238.
Ye Z, Yao S, Yang T, Li Q, Li Z, Song B. Abdominal diffusion-weighted MRI with simultaneous multi-slice acquisition: Agreement and reproducibility of apparent diffusion coefficients measurements. J Magn Reson Imaging 2023; in press. https://doi.org/10.1002/jmri.28876.
Le Bihan D, Breton E, Lallemand D, Aubin ML, Vignaud J, Laval-Jeantet M. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 1988;168:497-505.
Zhang JL, Sigmund EE, Chandarana H, et al. Variability of renal apparent diffusion coefficients: Limitations of the Monoexponential model for diffusion quantification. Radiology 2010;254:783-792.
Wittsack H-J, Lanzman RS, Mathys C, Janssen H, Mödder U, Blondin D. Statistical evaluation of diffusion-weighted imaging of the human kidney. Magn Reson Med 2010;64:616-622.
van Baalen S, Leemans A, Dik P, Lilien MR, ten Haken B, Froeling M. Intravoxel incoherent motion modeling in the kidneys: Comparison of mono-, bi-, and triexponential fit. J Magn Reson Imaging 2017;46:228-239.
Müller MF, Prasad PV, Edelman RR. Can the IVIM model be used for renal perfusion imaging? Eur J Radiol 1998;26:297-303.
Sigmund EE, Vivier P-H, Sui D, et al. Intravoxel incoherent motion and diffusion-tensor imaging in renal tissue under hydration and furosemide flow challenges. Radiology 2012;263:758-769.
van der Bel R, Gurney-Champion OJ, Froeling M, Stroes ESG, Nederveen AJ, Krediet CTP. A tri-exponential model for intravoxel incoherent motion analysis of the human kidney: In silico and during pharmacological renal perfusion modulation. Eur J Radiol 2017;91:168-174.
Periquito JS, Gladytz T, Millward JM, et al. Continuous diffusion spectrum computation for diffusion-weighted magnetic resonance imaging of the kidney tubule system. Quant Imaging Med Surg 2021;11:3098-3119.
Ebrahimi B, Saad A, Jiang K, et al. Renal adiposity confounds quantitative assessment of markers of renal diffusion with MRI: A proposed correction method. Invest Radiol 2017;52:672-679.
Wurnig MC, Germann M, Boss A. Is there evidence for more than two diffusion components in abdominal organs? A magnetic resonance imaging study in healthy volunteers. NMR Biomed 2018;31:e3852.
Stabinska J, Ljimani A, Zöllner HJ, et al. Spectral diffusion analysis of kidney intravoxel incoherent motion MRI in healthy volunteers and patients with renal pathologies. Magn Reson Med 2021;85:3085-3095.
Lawson CL, Hanson RJ. Solving least squares problems: Prentice-Hall, Englewood Cliffs, NJ; 1974.
Kuai Z-X, Liu W-Y, Zhang Y-L, Zhu Y-M. Generalization of intravoxel incoherent motion model by introducing the notion of continuous pseudodiffusion variable. Magn Reson Med 2016;76:1594-1603.
Ye Q, Chen Z, Zhao Y, et al. Initial experience of generalized intravoxel incoherent motion imaging and diffusion tensor imaging (GIVIM-DTI) in healthy subjects. J Magn Reson Imaging 2016;44:732-738.
Liu Z, Xu Y, Zhang J, et al. Chronic kidney disease: Pathological and functional assessment with diffusion tensor imaging at 3T MR. Eur Radiol 2015;25:652-660.
Razek AAKA, Al-Adlany MAAA, Alhadidy AM, Atwa MA, Abdou NEA. Diffusion tensor imaging of the renal cortex in diabetic patients: Correlation with urinary and serum biomarkers. Abdom Radiol 2017;42:1493-1500.
Hueper K, Khalifa AA, Bräsen JH, et al. Diffusion-weighted imaging and diffusion tensor imaging detect delayed graft function and correlate with allograft fibrosis in patients early after kidney transplantation. J Magn Reson Imaging 2016;44:112-121.
Notohamiprodjo M, Chandarana H, Mikheev A, et al. Combined intravoxel incoherent motion and diffusion tensor imaging of renal diffusion and flow anisotropy. Magn Reson Med 2015;73:1526-1532.
Liu A, Mikheev A, Rusinek H, et al. REnal flow and microstructure AnisotroPy (REFMAP) magnetic resonance imaging in normal and peritumoral renal tissue. J Magn Reson Imaging 2018;48:188-197.
Sigmund EE, Mikheev A, Brinkmann IM, et al. Cardiac phase and flow compensation effects on REnal flow and microstructure AnisotroPy MRI in healthy human kidney. J Magn Reson Imaging 2023;58;210-220.
Hilbert F, Bock M, Neubauer H, et al. An intravoxel oriented flow model for diffusion-weighted imaging of the kidney. NMR Biomed 2016;29:1403-1413.
Phi van V, Reiner CS, Klarhoefer M, et al. Diffusion tensor imaging of the abdominal organs: Influence of oriented intravoxel flow compartments. NMR Biomed 2019;32:e4159.
Jensen JH, Helpern JA. MRI quantification of non-Gaussian water diffusion by kurtosis analysis. NMR Biomed 2010;23:698-710.
Kristoffersen A. Optimized quantification of diffusional non-gaussianity in the human brain. J Magn Reson Imaging 2013;38:1434-1444.
Ljimani A, Lanzman RS, Müller-Lutz A, Antoch G, Wittsack H-J. Non-gaussian diffusion evaluation of the human kidney by Padé exponent model. J Magn Reson Imaging 2018;47:160-167.
Yablonskiy DA, Bretthorst GL, Ackerman JJH. Statistical model for diffusion attenuated MR signal. Magn Reson Med 2003;50:664-669.
Bennett KM, Hyde JS, Rand SD, et al. Intravoxel distribution of DWI decay rates reveals C6 glioma invasion in rat brain. Magn Reson Med 2004;52:994-1004.
Li H, Liang L, Li A, et al. Monoexponential, biexponential, and stretched exponential diffusion-weighted imaging models: Quantitative biomarkers for differentiating renal clear cell carcinoma and minimal fat angiomyolipoma. J Magn Reson Imaging 2017;46:240-247.
Iima M, Yano K, Kataoka M, et al. Quantitative non-Gaussian diffusion and intravoxel incoherent motion magnetic resonance imaging: Differentiation of malignant and benign breast lesions. Invest Radiol 2015;50:205-211.
Malagi AV, Netaji A, Kumar V, et al. IVIM-DKI for differentiation between prostate cancer and benign prostatic hyperplasia: Comparison of 1.5 T vs. 3 T MRI. Magma 2022;35:609-620.
Lu Y, Jansen JFA, Mazaheri Y, Stambuk HE, Koutcher JA, Shukla-Dave A. Extension of the intravoxel incoherent motion model to non-gaussian diffusion in head and neck cancer. J Magn Reson Imaging 2012;36:1088-1096.
Laothamatas I, Al Mubarak H, Reddy A, et al. Multiparametric MRI of solid renal masses: Principles and applications of advanced quantitative and functional methods for tumor diagnosis and characterization. J Magn Reson Imaging 2023;58:342-359.
Wang B, Wang Y, Wang J, et al. Multiparametric magnetic resonance investigations on acute and long-term kidney injury. J Magn Reson Imaging 2023; in press. https://doi.org/10.1002/jmri.28784.
Zhao K, Seeliger E, Niendorf T, Liu Z. Noninvasive assessment of diabetic kidney disease with MRI: Hype or Hope? J Magn Reson Imaging 2023; in press. https://doi.org/10.1002/jmri.29000.
Mao W, Ding Y, Ding X, et al. Capability of arterial spin labeling and intravoxel incoherent motion diffusion-weighted imaging to detect early kidney injury in chronic kidney disease. Eur Radiol 2023;33:3286-3294.
Liang P, Yuan G, Li S, et al. Non-invasive evaluation of the pathological and functional characteristics of chronic kidney disease by diffusion kurtosis imaging and intravoxel incoherent motion imaging: Comparison with conventional DWI. BJR 2023;96:20220644.
Liang P, Chen Y, Li S, et al. Noninvasive assessment of kidney dysfunction in children by using blood oxygenation level-dependent MRI and intravoxel incoherent motion diffusion-weighted imaging. Insights Imaging 2021;12:146.
Mao W, Zhou J, Zeng M, et al. Chronic kidney disease: Pathological and functional evaluation with intravoxel incoherent motion diffusion-weighted imaging. J Magn Reson Imaging 2018;47:1251-1259.
Mao W, Zhou J, Zeng M, et al. Intravoxel incoherent motion diffusion-weighted imaging for the assessment of renal fibrosis of chronic kidney disease: A preliminary study. Magn Reson Imaging 2018;47:118-124.
Sułkowska K, Palczewski P, Furmańczyk-Zawiska A, et al. Diffusion weighted magnetic resonance imaging in the assessment of renal function and parenchymal changes in chronic kidney disease: A preliminary study. Ann Transplant 2020;25:e920232.
Zhu J, Chen A, Gao J, et al. Diffusion-weighted, intravoxel incoherent motion, and diffusion kurtosis tensor MR imaging in chronic kidney diseases: Correlations with histology. Magn Reson Imaging 2023; in press. https://doi.org/10.1016/j.mri.2023.07.002.
Nassar MK, Khedr D, Abu-Elfadl HG, et al. Diffusion tensor imaging in early prediction of renal fibrosis in patients with renal disease: Functional and histopathological correlations. Int J Clin Pract 2021;75:e13918.
Lin J, Zhu C, Cui F, et al. Based on functional and histopathological correlations: Is diffusion kurtosis imaging valuable for noninvasive assessment of renal damage in early-stage of chronic kidney disease? Int Urol Nephrol 2023; in press. https://doi.org/10.1007/s11255-023-03632-y.
Mao W, Ding Y, Ding X, et al. Pathological assessment of chronic kidney disease with DWI: Is there an added value for diffusion kurtosis imaging? J Magn Reson Imaging 2021;54:508-517.
Mao W, Ding Y, Ding X, Fu C, Zeng M, Zhou J. Diffusion kurtosis imaging for the assessment of renal fibrosis of chronic kidney disease: A preliminary study. Magn Reson Imaging 2021;80:113-120.
Liu Y, Zhang G-M-Y, Peng X, Li X, Sun H, Chen L. Diffusion kurtosis imaging as an imaging biomarker for predicting prognosis in chronic kidney disease patients. Nephrol Dial Transplant 2022;37:1451-1460.
Adams LC, Bressem KK, Scheibl S, et al. Multiparametric assessment of changes in renal tissue after kidney transplantation with quantitative MR Relaxometry and diffusion-tensor imaging at 3 T. J Clin Med 2020;9:1551.
Coca SG, Yalavarthy R, Concato J, Parikh CR. Biomarkers for the diagnosis and risk stratification of acute kidney injury: A systematic review. Kidney Int 2008;73:1008-1016.
Rush DN, Henry SF, Jeffery JR, Schroeder TJ, Gough J. Histological findings in early routine biopsies of stable renal allograft recipients. Transplantation 1994;57:208-211.
Nolan N, Valdivieso K, Mani R, et al. Clinical and analytical validation of a novel urine-based test for the detection of allograft rejection in renal transplant patients. J Clin Med 2020;9:2325.
Farris AB, Adams CD, Brousaides N, et al. Morphometric and visual evaluation of fibrosis in renal biopsies. J Am Soc Nephrol 2011;22:176-186.
Hashim E, Yuen DA, Kirpalani A. Reduced flow in delayed graft function as assessed by IVIM is associated with time to recovery following kidney transplantation. J Magn Reson Imaging 2021;53:108-117.
Chen L, Ren T, Zuo P, Fu Y, Xia S, Shen W. Detecting impaired function of renal allografts at the early stage after transplantation using intravoxel incoherent motion imaging. Acta Radiol 2019;60:1039-1047.
Chang Y-C, Tsai Y-H, Chung M-C, et al. Intravoxel incoherent motion-diffusion-weighted MRI for investigation of delayed graft function immediately after kidney transplantation. Biomed Res Int 2022;2022:2832996.
Ni X, Wang W, Li X, et al. Utility of diffusion-weighted imaging for guiding clinical Management of Patients with Kidney Transplant: A prospective study. J Magn Reson Imaging 2020;52:565-574.
Poynton CB, Lee MM, Li Y, et al. Intravoxel incoherent motion analysis of renal allograft diffusion with clinical and histopathological correlation in pediatric kidney transplant patients: A preliminary cross-sectional observational study. Pediatr Transplant 2017;21:e12996.
Li Y, Lee MM, Worters PW, MacKenzie JD, Laszik Z, Courtier JL. Pilot study of renal diffusion tensor imaging as a correlate to histopathology in pediatric renal allografts. AJR Am J Roentgenol 2017;208:1358-1364.
Das CJ, Kubihal V, Kumar S, Agarwal SK, Dinda AK, Sreenivas V. Assessment of renal allograft rejection with diffusion tensor imaging. BJR 2023;96:20220722.
Deger E, Celik A, Dheir H, et al. Rejection evaluation after renal transplantation using MR diffusion tensor imaging. Acta Radiol 2018;59:876-883.
Zheng X, Li M, Wang P, et al. Assessment of chronic allograft injury in renal transplantation using diffusional kurtosis imaging. BMC Med Imaging 2021;21:63.
Seif M, Mani LY, Lu H, et al. Diffusion tensor imaging of the human kidney: Does image registration permit scanning without respiratory triggering? J Magn Reson Imaging 2016;44:327-334.
Ljimani A, Caroli A, Laustsen C, et al. Consensus-based technical recommendations for clinical translation of renal diffusion-weighted MRI. Magma 2020;33:177-195.
Kurugol S, Marami B, Afacan O, Warfield SK, Gholipour A. Motion-robust spatially constrained parameter estimation in renal diffusion-weighted MRI by 3D motion tracking and correction of sequential slices. Mol Imaging Reconstr Anal Mov Body Organs Stroke Imaging Treat 2017;2017(10555):75-85.
Coll-Font J, Afacan O, Hoge S, et al. Retrospective distortion and motion correction for free-breathing DW-MRI of the kidneys using dual-Echo EPI and slice-to-volume registration. J Magn Reson Imaging 2021;53:1432-1443.
Rauh SS, Maier O, Gurney-Champion OJ, et al. Model-based reconstructions for intravoxel incoherent motion and diffusion tensor imaging parameter map estimations. NMR Biomed 2023;36:e4927.
Gilani N, Mikheev A, Brinkmann IM, et al. Characterization of motion dependent magnetic field inhomogeneity for DWI in the kidneys. Magn Reson Imaging 2023;100:93-101.
Rauh SS, Riexinger AJ, Ohlmeyer S, et al. A mixed waveform protocol for reduction of the cardiac motion artifact in black-blood diffusion-weighted imaging of the liver. Magn Reson Imaging 2020;67:59-68.
Geng R, Zhang Y, Starekova J, et al. Characterization and correction of cardiovascular motion artifacts in diffusion-weighted imaging of the pancreas. Magn Reson Med 2021;86:1956-1969.
McTavish S, Van AT, Peeters JM, et al. Motion compensated renal diffusion weighted imaging. Magn Reson Med 2023;89:144-160.
Führes T, Saake M, Lorenz J, et al. Reduction of the cardiac pulsation artifact and improvement of lesion conspicuity in flow-compensated diffusion images in the liver-A quantitative evaluation of postprocessing algorithms. Magn Reson Med 2023;89:423-439.
Maki JH, Macfall JR, Johnson GA. The use of gradient flow compensation to separate diffusion and microcirculatory flow in MRI. Magn Reson Med 1991;17:95-107.
Wetscherek A, Stieltjes B, Laun FB. Flow-compensated intravoxel incoherent motion diffusion imaging. Magn Reson Med 2015;74:410-419.
Lanzman RS, Ljimani A, Müller-Lutz A, et al. Assessment of time-resolved renal diffusion parameters over the entire cardiac cycle. Magn Reson Imaging 2019;55:1-6.
Wittsack H-J, Lanzman RS, Quentin M, et al. Temporally resolved electrocardiogram-triggered diffusion-weighted imaging of the human kidney: Correlation between Intravoxel incoherent motion parameters and renal blood flow at different time points of the cardiac cycle. Invest Radiol 2012;47:226-230.
Heusch P, Wittsack H-J, Kröpil P, et al. Impact of blood flow on diffusion coefficients of the human kidney: A time-resolved ECG-triggered diffusion-tensor imaging (DTI) study at 3T. J Magn Reson Imaging 2013;37:233-236.
Ito K, Hayashida M, Kanki A, et al. Alterations in apparent diffusion coefficient values of the kidney during the cardiac cycle: Evaluation with ECG-triggered diffusion-weighted MR imaging. Magn Reson Imaging 2018;52:1-8.
Milani B, Ledoux J-B, Rotzinger DC, et al. Image acquisition for intravoxel incoherent motion imaging of kidneys should be triggered at the instant of maximum blood velocity: Evidence obtained with simulations and in vivo experiments. Magn Reson Med 2019;81:583-593.
Jerome NP, d'Arcy JA, Feiweier T, et al. Extended T2-IVIM model for correction of TE dependence of pseudo-diffusion volume fraction in clinical diffusion-weighted magnetic resonance imaging. Phys Med Biol 2016;61:N667-N680.
Stabinska J, Ljimani A, Frenken M, Feiweier T, Lanzman RS, Wittsack H-J. Comparison of PGSE and STEAM DTI acquisitions with varying diffusion times for probing anisotropic structures in human kidneys. Magn Reson Med 2020;84:1518-1525.
Chandarana H, Lee VS, Hecht E, Taouli B, Sigmund EE. Comparison of biexponential and monoexponential model of diffusion weighted imaging in evaluation of renal lesions: Preliminary experience. Invest Radiol 2011;46:285-291.
Cho GY, Moy L, Zhang JL, et al. Comparison of fitting methods and b-value sampling strategies for Intravoxel incoherent motion in breast cancer. Magn Reson Med 2015;74:1077-1085.
Jalnefjord O, Andersson M, Montelius M, et al. Comparison of methods for estimation of the intravoxel incoherent motion (IVIM) diffusion coefficient (D) and perfusion fraction (f). Magn Reson Mater Phy 2018;31:715-723.
Neil JJ, Bretthorst GL. On the use of bayesian probability theory for analysis of exponential decay date: An example taken from intravoxel incoherent motion experiments. Magn Reson Med 1993;29:642-647.
Bretthorst GL, Hutton WC, Garbow JR, Ackerman JJH. Exponential parameter estimation (in NMR) using Bayesian probability theory. Concepts Magn Reson Part A 2005;27A:55-63.
Orton MR, Collins DJ, Koh D-M, Leach MO. Improved intravoxel incoherent motion analysis of diffusion weighted imaging by data driven Bayesian modeling. Magn Reson Med 2014;71:411-420.
Gustafsson O, Montelius M, Starck G, Ljungberg M. Impact of prior distributions and central tendency measures on Bayesian intravoxel incoherent motion model fitting. Magn Reson Med 2018;79:1674-1683.
Barbieri S, Donati OF, Froehlich JM, Thoeny HC. Impact of the calculation algorithm on biexponential fitting of diffusion-weighted MRI in upper abdominal organs. Magn Reson Med 2016;75:2175-2184.
Kurugol S, Freiman M, Afacan O, Perez-Rossello JM, Callahan MJ, Warfield SK. Spatially-constrained probability distribution model of incoherent motion (SPIM) for abdominal diffusion-weighted MRI. Med Image Anal 2016;32:173-183.
Stabinska J, Zöllner HJ, Thiel TA, Wittsack H-J, Ljimani A. Image downsampling expedited adaptive least-squares (IDEAL) fitting improves intravoxel incoherent motion (IVIM) analysis in the human kidney. Magn Reson Med 2023;89:1055-1067.
Geman S, Geman D. Stochastic relaxation, gibbs distributions, and the bayesian restoration of images. IEEE Trans Pattern Anal Mach Intell 1984;6:721-741.
Black MJ, Rangarajan A. On the unification of line processes, outlier rejection, and robust statistics with applications in early vision. Int J Comput Vis 1996;19:57-91.
Barbieri S, Gurney-Champion OJ, Klaassen R, Thoeny HC. Deep learning how to fit an intravoxel incoherent motion model to diffusion-weighted MRI. Magn Reson Med 2020;83:312-321.
Kaandorp MPT, Barbieri S, Klaassen R, et al. Improved unsupervised physics-informed deep learning for intravoxel incoherent motion modeling and evaluation in pancreatic cancer patients. Magn Reson Med 2021;86:2250-2265.
Troelstra MA, Van Dijk A-M, Witjes JJ, et al. Self-supervised neural network improves tri-exponential intravoxel incoherent motion model fitting compared to least-squares fitting in non-alcoholic fatty liver disease. Front Physiol 2022;13:942495.
Vasylechko SD, Warfield SK, Afacan O, Kurugol S. Self-supervised IVIM DWI parameter estimation with a physics based forward model. Magn Reson Med 2022;87:904-914.
Lee W, Choi G, Lee J, Park H. Registration and quantification network (RQnet) for IVIM-DKI analysis in MRI. Magn Reson Med 2023;89:250-261.
Kaandorp MPT, Zijlstra F, Federau C, While PT. Deep learning intravoxel incoherent motion modeling: Exploring the impact of training features and learning strategies. Magn Reson Med 2023;90:312-328.
Moulin K, Aliotta E, Ennis DB. Effect of flow-encoding strength on intravoxel incoherent motion in the liver. Magn Reson Med 2019;81:1521-1533.
Mitra PP, Sen PN, Schwartz LM. Short-time behavior of the diffusion coefficient as a geometrical probe of porous media. Phys Rev B 1993;47:8565-8574.
Nery F, Szczepankiewicz F, Kerkelä L, et al. In vivo demonstration of microscopic anisotropy in the human kidney using multidimensional diffusion MRI. Magn Reson Med 2019;82:2160-2168.
Fouré A, Ogier AC, Le Troter A, et al. Diffusion properties and 3D architecture of human lower leg muscles assessed with ultra-high-field-strength diffusion-tensor MR imaging and Tractography: Reproducibility and sensitivity to sex difference and intramuscular variability. Radiology 2018;287:592-607.
Gaudiano C, Clementi V, Busato F, et al. Diffusion tensor imaging and tractography of the kidneys: Assessment of chronic parenchymal diseases. Eur Radiol 2013;23:1678-1685.
Hueper K, Gutberlet M, Rodt T, et al. Diffusion tensor imaging and tractography for assessment of renal allograft dysfunction-Initial results. Eur Radiol 2011;21:2427-2433.
Delgado J, Berman JI, Maya C, Carson RH, Back SJ, Darge K. Pilot study on renal magnetic resonance diffusion tensor imaging: Are quantitative diffusion tensor imaging values useful in the evaluation of children with ureteropelvic junction obstruction? Pediatr Radiol 2019;49:175-186.
Jaimes C, Darge K, Khrichenko D, Carson RH, Berman JI. Diffusion tensor imaging and tractography of the kidney in children: Feasibility and preliminary experience. Pediatr Radiol 2014;44:30-41.
Martinez-Heras E, Grussu F, Prados F, Solana E, Llufriu S. Diffusion-weighted imaging: Recent advances and applications. Semin Ultrasound CT MR 2021;42:490-506.
Moura LM, Luccas R, Paiva JPQ, et al. Diffusion tensor imaging biomarkers to predict motor outcomes in stroke: A narrative review. Front Neurol 2019;10:445.
Zhuo J, Gullapalli RP. Diffusion Kurtosis Imaging. In: Mannil M, Winklhofer SF-X, editors. Neuroimaging techniques in clinical practice: Physical concepts and clinical applications. Cham: Springer International Publishing; 2020. p 215-228.
Fu J, Ye J, Zhu W, Wu J, Chen W, Zhu Q. Magnetic resonance diffusion kurtosis imaging in differential diagnosis of benign and malignant renal tumors. Cancer Imaging 2021;21:6.
Mendez AM, Fang LK, Meriwether CH, et al. Diffusion breast MRI: Current standard and emerging techniques. Front Oncol 2022;12:844790.

Auteurs

Julia Stabinska (J)

F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA.
Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.

Hans-Jörg Wittsack (HJ)

Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich Heine University Düsseldorf, Dusseldorf, Germany.

Lilach O Lerman (LO)

Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA.
Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA.

Alexandra Ljimani (A)

Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich Heine University Düsseldorf, Dusseldorf, Germany.

Eric E Sigmund (EE)

Bernard and Irene Schwartz Center for Biomedical Imaging Center for Advanced Imaging Innovation and Research (CAI2R), New York University Langone Health, New York City, New York, USA.

Classifications MeSH