Adaptive Doppler bio-signal detector and time-frequency representation based on non-Liènard oscillator.

adaptive stopping oscillations blood velocity profile chaotic intermittence non-Liènard oscillator time-frequency analysis

Journal

International journal for numerical methods in biomedical engineering
ISSN: 2040-7947
Titre abrégé: Int J Numer Method Biomed Eng
Pays: England
ID NLM: 101530293

Informations de publication

Date de publication:
22 Nov 2023
Historique:
revised: 04 10 2023
received: 11 07 2023
accepted: 01 11 2023
medline: 22 11 2023
pubmed: 22 11 2023
entrez: 22 11 2023
Statut: aheadofprint

Résumé

The work presented here provides the guidelines and results for designing and implementing a highly sensitive modified Van der Pol - Duffing oscillator with a trigonometric damping function (VTD). This VTD can exhibit periodic and quasi-chaotic behavior necessary for application in weak signal detection. Here, we present two proposals: (1) A method based on a quasi-chaotic intermittent array (ANLIOA), whose all VTD parameters are calculated and fine-tuned toward a critical state between chaotic and periodic state through a Lyapunov exponent procedure, and (2) A method based on a single oscillator in an adaptive stopping oscillation system (ANLSOS), where VTD is established within an oscillatory regime. Both systems can detect non-stationary signals while reconstructing the time-frequency spectrogram in high resolution within severe noise conditions. The systems were adapted for the detection of a synthesized Doppler signal corresponding to the blood flow velocity profile from an artery. Comparative results using typical oscillators such as Duffing or Van der Pol demonstrate the superiority of the VTD oscillator in detection when used for both methods, whose mean absolute percentage error reached around 6% for a signal-to-noise ratio (SNR) of -10 dB. Furthermore, compared to other time-frequency methods, ANLIOA and ANLSOS promise high precision in detecting Doppler signals with low rates of frequency changes while minimizing energy emission and avoiding possible bio-thermal effects.

Identifiants

pubmed: 37991118
doi: 10.1002/cnm.3794
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e3794

Subventions

Organisme : Mexican Council for Humanities, Sciences, and Technologies
ID : 331405

Informations de copyright

© 2023 John Wiley & Sons Ltd.

Références

Elaskar S, Río DE. New Advances on Chaotic Intermittency and its Applications. Springer; 2018.
Xie Y, Lin T, Shi X. Weak signal frequency detection based on intermittent chaos. Proceedings of 2014 IEEE Chinese Guidance, Navigation and Control Conference. IEEE. August 8-10, 2014; Yantai, China.
Peng HH, Xu XM, Yang BC. Implication of two-coupled differential Van der Pol Duffing oscillator in weak signal detection. J Physical Soc Japan. 2016;85(4):1-8.
Costa AH, Enriquez-Caldera RA, Tello-Bello M. High resolution time-frequency representation for chirp signals using an adaptive system based on duffing oscillators. Digit Signal Process. 2016;55:32-43.
Hou J, Gong Z, Li P, Hao XQ. Adaptive time-frequency representation for weak chirp signals based on Duffing oscillator stopping oscillation system. Int J Adapt Control Signal Process. 2018;32(6):777-791.
Senay S. Time-frequency BSS of biosignals. Healthc Technol Lett. 2018;5:242-246.
Khan NA, Boashash B. Multi-component instantaneous frequency estimation using locally adaptive directional time frequency distributions. Int J Adapt Control Signal Process. 2016;30(3):429-442.
Xiong G, Figueroa CA, Xiao N, Taylor CA. Simulation of blood flow in deformable vessels using subject-specific geometry and spatially varying wall properties. Int J Numer Method Biomed Eng. 2010;27(7):1000-1016.
Izaguirre-Avila R, de Micheli A. Evolución del conocimiento sobre la sangre y su movimiento: Parte II. El saber sobre su composición. Iatroquímica de la sangre. Rev Invest Clin. 2005;57(1):85-97.
Funke S, Nordaas M, Evju Ø, Alnaes MS, Mardal K. Variational data assimilation for transient blood flow simulations: cerebral aneurysms as an illustrative example. Int J Numer Method Biomed Eng. 2019;35:e3152.
Bertoglio C, Nuñez R, Galarce F, Nordsletten D, Osses A. Relative pressure estimation from velocity measurements in blood flows: state-of-the-art and new approaches. Int J Numer Method Biomed Eng. 2018;34:e2925.
Rumak CM, Levine D. Diagnostic ultrasound. Urgent Care Medicine Secrets. ElSevier; 2018.
Schemetterer L, Kiel JW. Ocular Blow Flow. Springer; 2012.
Leitgeb RA, Schmetterer L, Drexler W. Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography. Opt Express. 2003;11(23):3116-3121.
White B, Pierce MC, Nassif N. In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical Doppler tomography. Opt Express. 2003;11(25):3490-3497.
Nishihara K, Iwasaki W, Nakamura M. Development of a wireless sensor for the measurement of chicken blood flow using the laser doppler blood flow meter technique. IEEE Trans Biomed Eng. 2013;60(6):1645-1653.
Shung KK. Diagnostic Ultrasound: Imaging and Blood Flow Measurements. Taylor and Francis; 2005.
Giné J. Center conditions for polynomial Liènard systems. Qual Theory Dyn Syst. 2017;16(11):119-126.
Pancoatl-Bortolotti P, Enriquez-Caldera R, Costa AH, Guerrero-Castellanos JF, Tello-Bello M. Liènard chaotic system based on Duffing and Sinc function for weak signal detection. IEEE Lat Am Trans. 2022;14(8):2114-2121.
Pancóatl-Bortolotti P, Costa A, Enríquez-Caldera R, Guerrero-Castellanos J, Tello-Bello M. Time-frequency high-resolution for weak signal detection using chaotic intermittence. Digit Signal Process. 2023;141:104160.
Awrejcewicz J, Holicke MM. Smooth and Non-smooth High Dimensional Chaos and Melnikov Type Methods. World Scientific; 2007.
Lynch S. Dynamical systems with applications using python. Dynamical Systems with Applications using Python. Springer International Publishing AG; 2018.
Zhihong Z, Shaopu Y. Application of van der Pol-Duffing oscillator in weak signal detection. Comput Electr Eng. 2015;41:1-8.
Bazhenov V, Pogorelova O, Postnikova T. Intermittent transition to chaos in vibroimpact system. Appl Math Nonlinear Sci. 2018;3(2):475-486.
Tian-Liang L. Frequency estimation for weak signals based on chaos theory. 2008 International Seminar on Future BioMedical Information Engineering. IEEE. Decembre 18, 2008; Wuhan, China.
Kovacic I, Brennan MJ. The Duffing Equation: Nonlinear Oscillators and their Behaviour. John Wiley and Sons; 2011.
Mitaim S, Kosko B. Adaptive stochastic resonance. Proc IEEE. 1998;86(11):2152-2183.
Crisanti A, Falcioni M, Paladin G, Vulpiani A. Stochastic resonance in deterministic chaotic systems. J Phys. 1994;27(17):L603.
Pancoatl-Bortolotti P, Enriquez-Caldera R, Costa AH, Tello-Bello M, Guerrero-Castellanos JF. Time-frequency high resolution using chaos in detection. TechRxiv. Preprint. 2022.
Wadehn F, Heldt T. Adaptive maximal blood flow velocity estimation from transcranial Doppler echos. Med Imaging Diagn Radiol. 2020;8:1-11.
Zambrano-Rangel R. Experimental measurement of blood physical properties an its application to blood flow simulation. Rev Mex Ing Quim. 2019;18:621-636.
Chen HY, Lv JY, Zhang SQ. Chaos weak signal detecting algorithm and its application in the ultrasonic Doppler bloodstream speed measuring. 7th International Symposium on Measurement Technology and Intelligent Instruments. Institute of Physics Publishing. 2005.
Neschis DG, Flinn WR. Duplex ultrasonography of the mesenteric circulation. In: AbuRahma AF, Bergan JJ, eds. Noninvasive Vascular Diagnosis. Springer; 2007.
Blanco P. Volumetric blood flow measurement using Doppler ultrasound: concerns about the technique. J Ultrasound. 2015;18(2):201-204.
Brandão P, Soares E, Estevinho C. Skeletal defect at mid-trimester ultrasound scan. J Med Ultrasound. 2018;26(2):115-117.
Gill RW. Measurement of blood flow by ultrasound: accuracy and sources of error. Ultrasound Med Biol. 1985;11(4):625-641.
Jean-Yves D, Jones SA. Modern spectral analysis techniques for blood flow velocity and spectral measurements with pulsed Doppler ultrasound. IEEE Trans Biomed Eng. 1991;38(6):589-596.
Kathpalia A, Karabiyik Y, Simensen B. A Robust Doppler Spectral Envelope Detection Technique for Automated Blood Flow Measurements. IEEE. 2015.

Auteurs

Pedro Pancóatl-Bortolotti (P)

Department of Electronics, INAOE, Puebla, Mexico.

Rogerio A Enríquez-Caldera (RA)

Department of Electronics, INAOE, Puebla, Mexico.

Antonio H Costa (AH)

Department of Electrical and Computer Engineering, University of Massachusetts Dartmouth, Dartmouth, Massachusetts, United States.

Maribel Tello-Bello (M)

Industrial Engineering Coordination, Anahuac University, Puebla, Mexico.

Jose F Guerrero-Castellanos (JF)

Faculty of Electronics, BUAP, Puebla, Mexico.

Classifications MeSH