Environmental Factors and the Symbiont Cardinium Influence the Bacterial Microbiome of Spider Mites Across the Landscape.


Journal

Microbial ecology
ISSN: 1432-184X
Titre abrégé: Microb Ecol
Pays: United States
ID NLM: 7500663

Informations de publication

Date de publication:
22 Nov 2023
Historique:
received: 10 08 2023
accepted: 30 10 2023
medline: 23 11 2023
pubmed: 22 11 2023
entrez: 22 11 2023
Statut: epublish

Résumé

Microbes play a key role in the biology, ecology, and evolution of arthropods. Despite accumulating data on microbial communities in arthropods that feed on plants using piercing-sucking mouthparts, we still lack a comprehensive understanding of the composition and assembly factors of the microbiota, particularly in field-collected spider mites. Here, we applied 16S rRNA amplicon sequencing to investigate the characters of the bacterial community in 140 samples representing 420 mite individuals, belonging to eight Tetranychus species (Acari: Tetranychidae) collected from 26 sites in China. The results showed that the bacterial composition of spider mites varied significantly among different species, locations, and plants. The environment showed a significant influence on the bacterial community of spider mites, with different relative contributions. Latitude and precipitation were found to be the main factors influencing the bacterial community composition. The dissimilarity of bacterial community and geographical distance between mite locations were significantly correlated. The assembly of spider mite bacterial communities seemed to be mainly influenced by stochastic processes. Furthermore, the symbiont Cardinium was found to be important in shaping the microbiota of many Tetranychus species. The relative abundance of Cardinium was > 50% in T. viennensis, T. urticae G, T. urticae R, and T. turkestani. Removing Cardinium reads from our analysis significantly changed Shannon diversity index and weighted beta diversity in these species. Altogether, this study provides novel insights into bacterial diversity patterns that contribute to our knowledge of the symbiotic relationships between arthropods and their bacterial communities.

Identifiants

pubmed: 37991578
doi: 10.1007/s00248-023-02314-7
pii: 10.1007/s00248-023-02314-7
doi:

Substances chimiques

RNA, Ribosomal, 16S 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1

Subventions

Organisme : National Natural Science Foundation of China
ID : 32001905 and 32020103011
Organisme : National Natural Science Foundation of China
ID : 32001905 and 32020103011
Organisme : National Key Research and Development Program of China
ID : 2022YFC2601000
Organisme : Natural Science Foundation of Jiangsu Province
ID : BK20211213
Organisme : Fundamental Research Funds for the Central Universities
ID : KJQN202110

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Stork NE (2018) How many species of insects and other terrestrial arthropods are there on earth? Annu Rev Entomol 63:31–45. https://doi.org/10.1146/annurev-ento-020117-043348
doi: 10.1146/annurev-ento-020117-043348 pubmed: 28938083
Wernegreen JJ (2012) Mutualism meltdown in insects: bacteria constrain thermal adaptation. Curr Opin Microbiol 15:255–262. https://doi.org/10.1016/j.mib.2012.02.001
doi: 10.1016/j.mib.2012.02.001 pubmed: 22381679 pmcid: 3590105
Bing X, Gerlach J, Loeb G, Buchon N (2018) Nutrient-dependent impact of microbes on Drosophila suzukii development. mBio 9:e02199-e2117. https://doi.org/10.1128/mBio.02199-17
doi: 10.1128/mBio.02199-17 pubmed: 29559576 pmcid: 5874910
Lax S, Cardona C, Zhao D, Winton VJ, Goodney G, Gao P, Gottel N, Hartmann EM, Henry C, Thomas PM, Kelley ST, Stephens B, Gilbert JA (2019) Microbial and metabolic succession on common building materials under high humidity conditions. Nat Commun 10:1767. https://doi.org/10.1038/s41467-019-09764-z
doi: 10.1038/s41467-019-09764-z pubmed: 30992445 pmcid: 6467912
Zhu Y-X, Song Z-R, Huo S-M, Yang K, Hong X-Y (2020) Variation in the microbiome of the spider mite Tetranychus truncatus with sex, instar and endosymbiont infection. FEMS Microbiol Ecol 96:fiaa004. https://doi.org/10.1093/femsec/fiaa004
doi: 10.1093/femsec/fiaa004 pubmed: 31942975
Jones EW, Carlson JM, Sivak DA, Ludington WB (2022) Stochastic microbiome assembly depends on context. Proc Natl Acad Sci U S A 119:e2115877119. https://doi.org/10.1073/pnas.2115877119
doi: 10.1073/pnas.2115877119 pubmed: 35135881 pmcid: 8851475
Brinker P, Fontaine MC, Beukeboom LW, Falcao Salles J (2019) Host, symbionts, and the microbiome: the missing tripartite interaction. Trends Microbiol 27:480–488. https://doi.org/10.1016/j.tim.2019.02.002
doi: 10.1016/j.tim.2019.02.002 pubmed: 30857919
Duan X-Z, Sun J-T, Wang L-T, Shu X-H, Guo Y, Keiichiro M, Zhu Y-X, Bing X-L, Hoffmann AA, Hong X-Y (2020) Recent infection by Wolbachia alters microbial communities in wild Laodelphax striatellus populations. Microbiome 8:104. https://doi.org/10.1186/s40168-020-00878-x
doi: 10.1186/s40168-020-00878-x pubmed: 32616041 pmcid: 7333401
Fromont C, Adair KL, Douglas AE (2019) Correlation and causation between the microbiome, Wolbachia and host functional traits in natural populations of drosophilid flies. Mol Ecol 28:1826–1841. https://doi.org/10.1111/mec.15041
doi: 10.1111/mec.15041 pubmed: 30714238
Dáder B, Then C, Berthelot E, Ducousso M, Ng JCK, Drucker M (2017) Insect transmission of plant viruses: multilayered interactions optimize viral propagation. Insect Sci 24:929–946. https://doi.org/10.1111/1744-7917.12470
doi: 10.1111/1744-7917.12470 pubmed: 28426155
Jing X, Wong ACN, Chaston JM, Colvin J, McKenzie CL, Douglas AE (2014) The bacterial communities in plant phloem-sap-feeding insects. Mol Ecol 23:1433–1444. https://doi.org/10.1111/mec.12637
doi: 10.1111/mec.12637 pubmed: 24350573
Wang D, Huang Z, He H, Wei C (2018) Comparative analysis of microbial communities associated with bacteriomes, reproductive organs and eggs of the cicada Subpsaltria yangi. Arch Microbiol 200:227–235. https://doi.org/10.1007/s00203-017-1432-8
doi: 10.1007/s00203-017-1432-8 pubmed: 28983672
Walter DE, Proctor HC (2013) Mites: ecology, evolution & behaviour. Springer, Dordrecht
doi: 10.1007/978-94-007-7164-2
Bensoussan N, Santamaria ME, Zhurov V, Diaz I, Grbić M, Grbić V (2016) Plant-herbivore interaction: dissection of the cellular pattern of Tetranychus urticae feeding on the host plant. Front Plant Sci 7. https://doi.org/10.3389/fpls.2016.01105
Hong X-Y (2011) Agricultural Acarology. China Agriculture Press Co., Ltd, Beijing
Leeuwen TV, Dermauw W (2016) The molecular evolution of xenobiotic metabolism and resistance in chelicerate mites. Annu Rev Entomol 61:475–498. https://doi.org/10.1146/annurev-ento-010715-023907
doi: 10.1146/annurev-ento-010715-023907 pubmed: 26982444
Zélé F, Santos I, Olivieri I, Weill M, Duron O, Magalhães S (2018) Endosymbiont diversity and prevalence in herbivorous spider mite populations in South-Western Europe. FEMS Microbiol Ecol 94. https://doi.org/10.1093/femsec/fiy015
Zhu Y-X, Song Y-L, Zhang Y-K, Hoffmann AA, Zhou J-C, Sun J-T, Hong X-Y (2018) Incidence of facultative bacterial endosymbionts in spider mites associated with local environment and host plant. Appl Environ Microbiol 84:e02546-e2517. https://doi.org/10.1128/aem.02546-17
doi: 10.1128/aem.02546-17 pubmed: 29330177 pmcid: 5835729
Zhang Y-K, Chen Y-T, Yang K, Qiao G-X, Hong X-Y (2016) Screening of spider mites (Acari: Tetranychidae) for reproductive endosymbionts reveals links between co-infection and evolutionary history. Sci Rep 6: 27900. https://doi.org/10.1038/srep27900 https://www.nature.com/articles/srep27900#supplementary-information
Chaisiri K, McGarry JW, Morand S, Makepeace BL (2015) Symbiosis in an overlooked microcosm: a systematic review of the bacterial flora of mites. Parasitology 142:1152–1162. https://doi.org/10.1017/S0031182015000530
doi: 10.1017/S0031182015000530 pubmed: 26004817
Zélé F, Weill M, Magalhães S (2018) Identification of spider-mite species and their endosymbionts using multiplex PCR. Exp Appl Acarol 74:123–138. https://doi.org/10.1007/s10493-018-0224-4
doi: 10.1007/s10493-018-0224-4 pubmed: 29435771
Xue W-X, Sun J-T, Witters J, Vandenhole M, Dermauw W, Bajda SA, Simma EA, Wybouw N, Villacis-Perez E, Van Leeuwen T (2023) Incomplete reproductive barriers and genomic differentiation impact the spread of resistance mutations between green- and red-colour morphs of a cosmopolitan mite pest. Mol Ecol 32:4278–4297. https://doi.org/10.1111/mec.16994
doi: 10.1111/mec.16994 pubmed: 37211626
Villacis-Perez E, Snoeck S, Kurlovs AH, Clark RM, Breeuwer JAJ, Van Leeuwen T (2021) Adaptive divergence and post-zygotic barriers to gene flow between sympatric populations of a herbivorous mite. Commun Biol 4:853. https://doi.org/10.1038/s42003-021-02380-y
doi: 10.1038/s42003-021-02380-y pubmed: 34244609 pmcid: 8270941
Suh E, Sim C, Park J-J, Cho K (2015) Inter-population variation for Wolbachia induced reproductive incompatibility in the haplodiploid mite Tetranychus urticae. Exp Appl Acarol 65:55–71. https://doi.org/10.1007/s10493-014-9846-3
doi: 10.1007/s10493-014-9846-3 pubmed: 25091123
Gotoh T, Sugasawa J, Noda H, Kitashima Y (2007) Wolbachia-induced cytoplasmic incompatibility in Japanese populations of Tetranychus urticae (Acari: Tetranychidae). Exp Appl Acarol 42:1–16. https://doi.org/10.1007/s10493-007-9072-3
doi: 10.1007/s10493-007-9072-3 pubmed: 17447012
Bing X-L, Lu Y-J, Xia C-B, Xia X, Hong X-Y (2020) Transcriptome of Tetranychus urticae embryos reveals insights into Wolbachia-induced cytoplasmic incompatibility. Insect Mol Biol 29:193–204. https://doi.org/10.1111/imb.12620
doi: 10.1111/imb.12620 pubmed: 31596027
Wybouw N, Mortier F, Bonte D (2022) Interacting host modifier systems control Wolbachia-induced cytoplasmic incompatibility in a haplodiploid mite. Evolution Letters 6:255–265. https://doi.org/10.1002/evl3.282
doi: 10.1002/evl3.282 pubmed: 35784453 pmcid: 9233175
Zhao D-X, Zhang X-F, Hong X-Y (2013) Host-symbiont interactions in spider mite Tetranychus truncatus doubly infected with Wolbachia and Cardinium. Environ Entomol 42:445–452. https://doi.org/10.1603/EN12354
doi: 10.1603/EN12354 pubmed: 23726053
Zhu L-Y, Zhang K-J, Zhang Y-K, Ge C, Gotoh T, Hong X-Y (2012) Wolbachia strengthens Cardinium-induced cytoplasmic incompatibility in the spider mite Tetranychus piercei McGregor. Curr Microbiol 65:516–523. https://doi.org/10.1007/s00284-012-0190-8
doi: 10.1007/s00284-012-0190-8 pubmed: 22806335
Zhu Y-X, Song Z-R, Song Y-L, Hong X-Y (2020) Double infection of Wolbachia and Spiroplasma alters induced plant defense and spider mite fecundity. Pest Manag Sci 76:3273–3281. https://doi.org/10.1002/ps.5886
doi: 10.1002/ps.5886 pubmed: 32388920
Zhu Y-X, Song Z-R, Zhang Y-Y, Hoffmann AA, Hong X-Y (2021) Spider mites singly infected with either Wolbachia or Spiroplasma have reduced thermal tolerance. Front Microbiol 12. https://doi.org/10.3389/fmicb.2021.706321
Yang K, Chen H, Bing X-L, Xia X, Zhu Y-X, Hong X-Y (2021) Wolbachia and Spiroplasma could influence bacterial communities of the spider mite Tetranychus truncatus. Exp Appl Acarol 83:197–210. https://doi.org/10.1007/s10493-021-00589-4
doi: 10.1007/s10493-021-00589-4 pubmed: 33484388
Chen L, Sun J-T, Jin P-Y, Hoffmann AA, Bing X-L, Zhao D-S, Xue X-F, Hong X-Y (2020) Population genomic data in spider mites point to a role for local adaptation in shaping range shifts. Evol Appl 13:2821–2835. https://doi.org/10.1111/eva.13086
doi: 10.1111/eva.13086 pubmed: 33294025 pmcid: 7691463
Bing X-L, Zhao D-S, Peng C-W, Huang H-J, Hong X-Y (2020) Similarities and spatial variations of bacterial and fungal communities in field rice planthopper (Hemiptera: Delphacidae) populations. Insect Sci 27:947–963. https://doi.org/10.1111/1744-7917.12782
doi: 10.1111/1744-7917.12782 pubmed: 32198842
Zhu Y-X, Song Z-R, Song Y-L, Zhao D-S, Hong X-Y (2020) The microbiota in spider mite feces potentially reflects intestinal bacterial communities in the host. Insect Sci 27:859–868. https://doi.org/10.1111/1744-7917.12716
doi: 10.1111/1744-7917.12716 pubmed: 31411007
Ge C, Ding X-L, Zhang J-P, Hong X-Y (2013) Tetranychus urticae (green form) on Gossypium hirsutum in China: two records confirmed by aedeagus morphology and RFLP analysis. Syst Appl Acarol 18:239–244. https://doi.org/10.11158/saa.18.3.6
doi: 10.11158/saa.18.3.6
Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, Glöckner FO (2013) Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res 41:e1–e1. https://doi.org/10.1093/nar/gks808
doi: 10.1093/nar/gks808 pubmed: 22933715
Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F, Bai Y, Bisanz JE, Bittinger K, Brejnrod A, Brislawn CJ, Brown CT, Callahan BJ, Caraballo-Rodríguez AM, Chase J, Cope EK, Da Silva R, Diener C, Dorrestein PC, Douglas GM, Durall DM, Duvallet C, Edwardson CF, Ernst M, Estaki M, Fouquier J, Gauglitz JM, Gibbons SM, Gibson DL, Gonzalez A, Gorlick K, Guo J, Hillmann B, Holmes S, Holste H, Huttenhower C, Huttley GA, Janssen S, Jarmusch AK, Jiang L, Kaehler BD, Kang KB, Keefe CR, Keim P, Kelley ST, Knights D, Koester I, Kosciolek T, Kreps J, Langille MGI, Lee J, Ley R, Liu Y-X, Loftfield E, Lozupone C, Maher M, Marotz C, Martin BD, McDonald D, McIver LJ, Melnik AV, Metcalf JL, Morgan SC, Morton JT, Naimey AT, Navas-Molina JA, Nothias LF, Orchanian SB, Pearson T, Peoples SL, Petras D, Preuss ML, Pruesse E, Rasmussen LB, Rivers A, Robeson MS, Rosenthal P, Segata N, Shaffer M, Shiffer A, Sinha R, Song SJ, Spear JR, Swafford AD, Thompson LR, Torres PJ, Trinh P, Tripathi A, Turnbaugh PJ, Ul-Hasan S, van der Hooft JJJ, Vargas F, Vázquez-Baeza Y, Vogtmann E, von Hippel M, Walters W, Wan Y, Wang M, Warren J, Weber KC, Williamson CHD, Willis AD, Xu ZZ, Zaneveld JR, Zhang Y, Zhu Q, Knight R, Caporaso JG (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37:852–857. https://doi.org/10.1038/s41587-019-0209-9
doi: 10.1038/s41587-019-0209-9 pubmed: 31341288 pmcid: 7015180
Rognes T, Flouri T, Nichols B, Quince C, Mahé F (2016) VSEARCH: a versatile open source tool for metagenomics. PeerJ 4:e2584. https://doi.org/10.7717/peerj.2584
doi: 10.7717/peerj.2584 pubmed: 27781170 pmcid: 5075697
Amir A, McDonald D, Navas-Molina JA, Kopylova E, Morton JT, Xu ZZ, Kightley EP, Thompson LR, Hyde ER, Gonzalez A, Knight R (2017) Deblur rapidly resolves single-nucleotide community sequence patterns. mSystems 2: https://doi.org/10.1128/msystems.00191-00116 . https://doi.org/10.1128/msystems.00191-16
Bokulich NA, Kaehler BD, Rideout JR, Dillon M, Bolyen E, Knight R, Huttley GA, Gregory Caporaso J (2018) Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6:90. https://doi.org/10.1186/s40168-018-0470-z
doi: 10.1186/s40168-018-0470-z pubmed: 29773078 pmcid: 5956843
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2012) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596. https://doi.org/10.1093/nar/gks1219
doi: 10.1093/nar/gks1219 pubmed: 23193283 pmcid: 3531112
Lozupone C, Lladser ME, Knights D, Stombaugh J, Knight R (2011) UniFrac: an effective distance metric for microbial community comparison. ISME J 5:169–172. https://doi.org/10.1038/ismej.2010.133
doi: 10.1038/ismej.2010.133 pubmed: 20827291
Oksanen J, Kindt R, Legendre P, O’Hara B, Stevens MHH, Oksanen MJ, Suggests M (2007) The vegan package. Community Ecol Package 10:631–637
McMurdie PJ, Holmes S (2013) phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. Plos One 8:e61217. https://doi.org/10.1371/journal.pone.0061217
doi: 10.1371/journal.pone.0061217 pubmed: 23630581 pmcid: 3632530
R Team C (2022) R: a language and environment for statistical computing R Foundation for Statistical Computing. http://www.R-project.org/
Wickham H (2016) ggplot2: elegant graphics for data analysis. Springer
doi: 10.1007/978-3-319-24277-4
Sloan WT, Lunn M, Woodcock S, Head IM, Nee S, Curtis TP (2006) Quantifying the roles of immigration and chance in shaping prokaryote community structure. Environ Microbiol 8:732–740. https://doi.org/10.1111/j.1462-2920.2005.00956.x
doi: 10.1111/j.1462-2920.2005.00956.x pubmed: 16584484
Stegen JC, Lin X, Fredrickson JK, Chen X, Kennedy DW, Murray CJ, Rockhold ML, Konopka A (2013) Quantifying community assembly processes and identifying features that impose them. ISME J 7:2069–2079. https://doi.org/10.1038/ismej.2013.93
doi: 10.1038/ismej.2013.93 pubmed: 23739053 pmcid: 3806266
Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, Blomberg SP, Webb CO (2010) Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26:1463–1464. https://doi.org/10.1093/bioinformatics/btq166
doi: 10.1093/bioinformatics/btq166 pubmed: 20395285
Auger P, Migeon A, Ueckermann EA, Tiedt L, Navajas M (2013) Evidence for synonymy between Tetranychus urticae and Tetranychus cinnabarinus (Acari, Prostigmata, Tetranychidae): Review and new data. Acarologia 53:383–415. https://doi.org/10.1051/acarologia/20132102
doi: 10.1051/acarologia/20132102
Jin P-Y, Tian L, Chen L (2012) Hong X-Y (2018) Spider mites of agricultural importance in China, with focus on species composition during the last decade (2008–2017). Syst Appl Acarol 23:2087–2098
Gawande SJ, Anandhan S, Ingle A, Roylawar P, Khandagale K, Gawai T, Jacobson A, Asokan R, Singh M (2019) Microbiome profiling of the onion thrips, Thrips tabaci Lindeman (Thysanoptera: Thripidae). Plos One 14:e0223281. https://doi.org/10.1371/journal.pone.0223281
doi: 10.1371/journal.pone.0223281 pubmed: 31568480 pmcid: 6768462
Baumann P (2005) Biology of bacteriocyte-associated endosymbionts of plant sap-sucking insects. Annu Rev Microbiol 59:155–189. https://doi.org/10.1146/annurev.micro.59.030804.121041
doi: 10.1146/annurev.micro.59.030804.121041 pubmed: 16153167
Lemoine R, La Camera S, Atanassova R, Dédaldéchamp F, Allario T, Pourtau N, Bonnemain J-L, Laloi M, Coutos-Thévenot P, Maurousset L, Faucher M, Girousse C, Lemonnier P, Parrilla J, Durand M (2013) Source-to-sink transport of sugar and regulation by environmental factors. Front Plant Sci 4. https://doi.org/10.3389/fpls.2013.00272
Näpflin K, Schmid-Hempel P (2018) Host effects on microbiota community assembly. J Anim Ecol 87:331–340. https://doi.org/10.1111/1365-2656.12768
doi: 10.1111/1365-2656.12768 pubmed: 29023693
Van Opijnen T, Breeuwer J (1999) High temperatures eliminate Wolbachia, a cytoplasmic incompatibility inducing endosymbiont, from the two-spotted spider mite. Exp Appl Acarol 23:871–881
doi: 10.1023/A:1006363604916 pubmed: 10668862
Sieber M, Pita L, Weiland-Bräuer N, Dirksen P, Wang J, Mortzfeld B, Franzenburg S, Schmitz RA, Baines JF, Fraune S, Hentschel U, Schulenburg H, Bosch TCG, Traulsen A (2019) Neutrality in the metaorganism. Plos Biol 17:e3000298. https://doi.org/10.1371/journal.pbio.3000298
doi: 10.1371/journal.pbio.3000298 pubmed: 31216282 pmcid: 6583948
Ge Y, Jing Z, Diao Q, He J-Z, Liu Y-J (2021) Host species and geography differentiate honeybee gut bacterial communities by changing the relative contribution of community assembly processes. mBio 12:e00751-00721. https://doi.org/10.1128/mBio.00751-21
doi: 10.1128/mBio.00751-21 pubmed: 34061602 pmcid: 8262996
Gottlieb Y, Ghanim M, Gueguen G, Kontsedalov S, Vavre F, Fleury F, Zchori-Fein E (2008) Inherited intracellular ecosystem: symbiotic bacteria share bacteriocytes in whiteflies. FASEB J 22:2591–2599. https://doi.org/10.1096/Fj.07-101162
doi: 10.1096/Fj.07-101162 pubmed: 18285399
Zchori-Fein E, Perlman SJ (2004) Distribution of the bacterial symbiont Cardinium in arthropods. Mol Ecol 13:2009–2016. https://doi.org/10.1046/j.1365-294X.2004.02203.x
doi: 10.1046/j.1365-294X.2004.02203.x pubmed: 15189221
Hubert J, Nesvorna M, Klimov PB, Erban T, Sopko B, Dowd SE, Scully ED, Bordenstein S (2021) Interactions of the intracellular bacterium Cardinium with its host, the house dust mite Dermatophagoides farinae, based on gene expression data. mSystems 6:e00916-00921. https://doi.org/10.1128/mSystems.00916-21
doi: 10.1128/mSystems.00916-21 pubmed: 34726490 pmcid: 8562489
Zhang Y-K, Chen Y-T, Yang K, Hong X-Y (2016) A review of prevalence and phylogeny of the bacterial symbiont Cardinium in mites (subclass: Acari). Syst Appl Acarol 21:978–990. https://doi.org/10.11158/saa.21.7.11
doi: 10.11158/saa.21.7.11
Liu Y, Xie R-R, Hong X-Y (2010) Manipulation of symbiont Cardinium on the reproduction of the carmine spidermite, Tetranychus cinnabarinus (Boisduval) (Acari:Tetranychidae). Acta Entomol Sin 53:1233–1240
Gotoh T, Noda H, Ito S (2007) Cardinium symbionts cause cytoplasmic incompatibility in spider mites. Heredity 98:13–20. https://doi.org/10.1038/sj.hdy.6800881
doi: 10.1038/sj.hdy.6800881 pubmed: 17035954

Auteurs

Huan-Huan Liu (HH)

Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.

Lei Chen (L)

Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.

Hui-Biao Shao (HB)

Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.

Shuo Gao (S)

Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.

Xiao-Yue Hong (XY)

Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.

Xiao-Li Bing (XL)

Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China. xlbing@njau.edu.cn.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH