Evaluation and molecular docking study of two flavonoids from Oroxylum indicum (L.) Kurz and their semi-synthetic derivatives as histone deacetylase inhibitors.
Chrysin
Flavonoids
Galangin 3-methyl ether
HDAC
Oroxylum indicum
Journal
Journal of natural medicines
ISSN: 1861-0293
Titre abrégé: J Nat Med
Pays: Japan
ID NLM: 101518405
Informations de publication
Date de publication:
22 Nov 2023
22 Nov 2023
Historique:
received:
24
07
2023
accepted:
16
10
2023
medline:
22
11
2023
pubmed:
22
11
2023
entrez:
22
11
2023
Statut:
aheadofprint
Résumé
Chrysin (5,7-dihydroxyflavone, 6) and galangin 3-methyl ether (5,7-dihydroxy-3-methoxy flavone, 7) were obtained from the leaves of Oroxylum indicum (L.) Kurz in 4% and 6% yields, respectively. Both compounds could act as pan-histone deacetylase (HDAC) inhibitors. Structural modification of these lead compounds provided thirty-eight derivatives which were further tested as HDAC inhibitors. Compounds 6b, 6c, and 6q were the most potent derivatives with the IC
Identifiants
pubmed: 37991632
doi: 10.1007/s11418-023-01758-y
pii: 10.1007/s11418-023-01758-y
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Khon Kaen University
ID : FF2566
Informations de copyright
© 2023. The Author(s) under exclusive licence to The Japanese Society of Pharmacognosy.
Références
Dinda B, Silsarma I, Dinda M, Rudrapaula P (2015) Oroxylum indicum (L.) Kurz, an important Asian traditional medicine: from traditional uses to scientific data for its commercial exploitation. J Ethnopharmacol 161:255–278. https://doi.org/10.1016/j.jep.2014.12.027
doi: 10.1016/j.jep.2014.12.027
pubmed: 25543018
Kamkaen N, Wilkinson JM, Cavanagh HM (2006) Cytotoxic effect of four Thai edible plants on mammalian cell proliferation. Thai Pharma Health Sci J 1:189–195
Luitel H, Rajbhandari M, Kalauni SK, Awale S, Masuda K, Gewali MB (2010) Chemical constituents from Oroxylum indicum (L.) Kurz of Nepalese origin. Scientific World 8:66–68. https://doi.org/10.3126/sw.v8i8.3852
doi: 10.3126/sw.v8i8.3852
Lawania RD, Mishra A, Gupta R (2010) Oroxylum indicum: a review Pharmacognosy J 2:304–310. https://doi.org/10.1016/S0975-3575(10)80121-X
doi: 10.1016/S0975-3575(10)80121-X
Jagetia GC (2021) A review on the medicinal and pharmacological properties of traditional ethnomedicinal plant sonopath, Oroxylum indicum. Sinusitis 5:71–89. https://doi.org/10.3390/sinusitis5010009
doi: 10.3390/sinusitis5010009
Hildmann C, Riester D, Schwienhors A (2007) Histone deacetylases—an important class of cellular regulators with a variety of functions. Microbiol Biotechnol 75:487–497. https://doi.org/10.1007/s00253-007-0911-2
doi: 10.1007/s00253-007-0911-2
Colussi C, IIIi B, Spallotta J, Farsetti A, Grasselli A, Mai A, Capogrossi M, Gaetanoa C, (2010) Histone deacetylase inhibitors: keeping momentum for neuromuscular and cardiovascular diseases treatment. Pharmacol Res 62:3–10. https://doi.org/10.1016/j.phrs.2010.02.014
doi: 10.1016/j.phrs.2010.02.014
pubmed: 20227503
Wang F, Wang C, Wang J, Zou Y, Chen X, Liu T, He B (2019) N
doi: 10.1098/rsos.190338
pubmed: 31312496
pmcid: 6599804
McLaughlin F, Thangue NBL (2004) Histone deacetylase inhibitors open new doors in cancer therapy. Biochem Pharmacol 68:1139–1144. https://doi.org/10.1016/j.bcp.2004.05.034
doi: 10.1016/j.bcp.2004.05.034
pubmed: 15313411
Wang F, Lu W, Zhang T, Dong J, Gao H, Li P, Wang S, Zhang J (2013) Development of novel ferulic acid derivatives as potent histone deacetylase inhibitors. Bioorg Med Chem 21:6973–6980. https://doi.org/10.1016/j.bmc.2013.09.021
doi: 10.1016/j.bmc.2013.09.021
pubmed: 24095016
Qiu X, Xiao X, Li N, Li Y (2017) Histone deacetylases inhibitors (HDACis) as novel therapeutic application in various clinical diseases. Prog Neuro-Psychoph 72:60–72. https://doi.org/10.1016/j.pnpbp.2016.09.002
doi: 10.1016/j.pnpbp.2016.09.002
Witt O, Deubzer HE, Milde T, Oehme I (2009) HDAC family: What are the cancer relevant targets? Cancer Lett 227:8–21. https://doi.org/10.1016/j.canlet.2008.08.016
doi: 10.1016/j.canlet.2008.08.016
De Ruijter AJM, Gennip VAH, Caron HN, Kemp S, Kuilenburg ABPV (2003) Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J 370:737–739. https://doi.org/10.1042/bj20021321
doi: 10.1042/bj20021321
pubmed: 12429021
pmcid: 1223209
Zwergel C, Valente S, Jacob C, Mai A (2015) Emerging approaches for histone Deacetylase inhibitor drug discovery. Expert Opin Drug Discov 10:599–613. https://doi.org/10.1517/17460441.2015.1038236
doi: 10.1517/17460441.2015.1038236
pubmed: 25895649
Abdizadeh T, Kalani MR, Abnous K, Tayarani-Najaran Z, Khashyarmanesh BZ, Abdizadeh R, Ghodsi R, Hadizadeh F (2017) Design, synthesis, and biological evaluation of novel coumarin-based benzamides as potent histone deacetylase inhibitors and anticancer agents. Eur J Med Chem 132:42–62. https://doi.org/10.1016/j.ejmech.2017.03.024
doi: 10.1016/j.ejmech.2017.03.024
pubmed: 28340413
Bolden JE, Peart MJ, Johnstone RW (2006) Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov 5:769–784. https://doi.org/10.1038/nrd2133
doi: 10.1038/nrd2133
pubmed: 16955068
Paris M, Porcelloni M, Binaschi M, Fattori D (2008) Histone deacetylase inhibitors: from bench to clinic. J Med Chem 51:1505–1529. https://doi.org/10.1021/jm7011408
doi: 10.1021/jm7011408
pubmed: 18247554
Fishcher A, Sananbenesi F, Mungenast A, Tsai LH (2010) Targeting the correct HDACs to treat cognitive disorders. Trends Pharmacol Sci 31:605–617. https://doi.org/10.1016/j.tips.2010.09.003
doi: 10.1016/j.tips.2010.09.003
Ververis K, Hiong A, Karagiannis TC, Licciardi PV (2013) Histone deacetylase inhibitors (HDACIs): multitargeted anticancer agents. Biol Targets Ther 7:47–60. https://doi.org/10.2147/BTT.S29965
doi: 10.2147/BTT.S29965
Linciano P, Benedetti R, Pinzi L, Russo F, Chianese U, Sorbi C, Altucci L, Rastelli G, Brasili L, Franchini S (2021) Investigation of the effect of different linker chemotypes on the inhibition of histone deacetylases (HDACs). Bioorg Chem 106:104462. https://doi.org/10.1016/j.bioorg.2020.104462
doi: 10.1016/j.bioorg.2020.104462
pubmed: 33213894
Abdalla MM (2016) Medicinal significance of naturally occurring cyclopeptides. J Nat Med 70:708–720. https://doi.org/10.1007/s11418-016-1001-5
doi: 10.1007/s11418-016-1001-5
pubmed: 27300506
Son H, Chang IM, Lee SI, Yang HD (2007) Moon HI (2007) Pomiferin, histone deacetylase inhibitor isolated from the fruits of Maclura pomifera. Bioorg Med Chem Lett 17:4753–4755. https://doi.org/10.1016/j.bmcl.2007.06.060
doi: 10.1016/j.bmcl.2007.06.060
pubmed: 17662606
Kummboonma P, Senawong T, Saenglee S, Yenjai C, Phaosiri C (2017) Identification of phenolic compounds from Zingiber offinale and their derivatives as histone deacetylase inhibitors and antioxidants. Med Chem Res 26:650–661. https://doi.org/10.1007/s00044-017-1785-1
doi: 10.1007/s00044-017-1785-1
Berger A, Venturelli S, Kallnischkies M, Böcker A, Busch C, Weilanda T, Noor S, Leischner C, Weiss TS, Lauera UM, Bischoff SC, Bitzer M (2013) Kaempferol, a new nutrition-derived pan-inhibitor of human histone deacetylases. J Nutr Biochem 24:977–985. https://doi.org/10.1016/j.jnutbio.2012.07.001
doi: 10.1016/j.jnutbio.2012.07.001
pubmed: 23159065
Ali RM, Houghton PJ, Raman A, Hoult JRS (1998) Antimicrobial and anti-inflammatory activities of extracts and constituents of Oroxylum indicum (L.) Vent. Phytomedicine 5:375–381. https://doi.org/10.1016/S0944-7113(98)80020-2
doi: 10.1016/S0944-7113(98)80020-2
Santi MD, Bouzidi C, Gorod NS, Puiatti M, Michel S, Grougnet R, Ortega MG (2019) In vitro biological evaluation and molecular docking studies of natural and semisynthetic flavones from Gardenia oudiepe (Rubiaceae) as tyrosinase inhibitors. Bioorg Chem 82:241–245. https://doi.org/10.1016/j.bioorg.2018.10.034
doi: 10.1016/j.bioorg.2018.10.034
pubmed: 30391854
Lee YE, Kodama T, Morita H (2023) Novel insights into the antibacterial activities of cannabinoid biosynthetic intermediates, olivetolic acid, and its alkyl-chain derivatives. J Nat Med 77:298–305. https://doi.org/10.1016/j.bioorg.2020.104370
doi: 10.1016/j.bioorg.2020.104370
pubmed: 36572832
Babu TH, Manjulatha K, Kumar GS, Hymavathi A, Tiwari AK, Purohit M, Rao JM, Babu KS (2010) Gastroprotective flavonoid constituents from Oroxylum indicum Vent. Bioorg Med Chem Lett 20:117–120. https://doi.org/10.1016/j.bmcl.2009.11.024
doi: 10.1016/j.bmcl.2009.11.024
Zou XQ, Peng SM, Hu CP, Tan LF, Yuan Q, Deng HW, Li YJ (2010) Synthesis, characterization and vasculoprotective effects of nitric oxide-donating derivatives of chrysin. Bioorg Med Chem 18:3020–3025. https://doi.org/10.1016/j.bmc.2010.03.056
doi: 10.1016/j.bmc.2010.03.056
pubmed: 20395149
Babu KS, Babu TH, Srinivas PV, Kishore KH, Murthy USN, Rao JM (2006) Synthesis and biological evaluation of novel C (7) modified chrysin analogues as antibacterial agents. Bioorg Med Chem Lett 16:221–224. https://doi.org/10.1016/j.bmcl.2005.09.009
doi: 10.1016/j.bmcl.2005.09.009
Somsakeesit L-o, Senawong T, Kumboonma P, Saenglee S, Samankul A, Senawong G, Yenjai C, Phaosiri C (2020) Influence of side-chain changes on histone Deacetylase inhibitory and cytotoxicity activities of curcuminoid derivatives. Bioorg Med Chem Lett 30:127171–127176. https://doi.org/10.1016/j.bmcl.2020.127171
doi: 10.1016/j.bmcl.2020.127171
pubmed: 32273215
Asgar MA, Senawong G, Sripa B, Senawong T (2015) Scopoletin potentiates the anti- cancer effects of cisplatin against cholangiocarcinoma cell lines. Bangladesh J Pharmacol 10:69–77. https://doi.org/10.3329/bjp.v10i1.21202
doi: 10.3329/bjp.v10i1.21202
Kattar SD, Surdi LM, Zabierek A, Methot JL, Middleton RE, Hughes B et al (2009) Parallel medicinal chemistry approaches to selective HDAC1/HDAC2 inhibitor (SHI- 1:2) optimization. Bioorg Med Chem Lett 19:1168–1172. https://doi.org/10.1016/j.bmcl.2008.12.083
doi: 10.1016/j.bmcl.2008.12.083
pubmed: 19138845
Chakrabarti A, Oehme I, Witt O, Oliveira G, Sippl W, Romier C, Pierce RT, Jung M (2015) HDAC8: a multifaceted target for therapeutic interventions. Trends Pharmacol Sci 36:481–492. https://doi.org/10.1016/j.tips.2015.04.013
doi: 10.1016/j.tips.2015.04.013
pubmed: 26013035
Ganai SA, Sheikh FA, Baba ZA (2021) Plant flavone chrysin as an emerging histone deacetylase inhibitor for prosperous epigenetic-based anticancer therapy. Phytother Res 35:823–834. https://doi.org/10.1002/ptr.6869
doi: 10.1002/ptr.6869
pubmed: 32930436
Asgar MD, Senawong G, Sripa B, Senawong T (2016) Synergistic anticancer effects of cisplatin and histone deacetylase inhibitors (SAHA and TSA) on cholangiocarcinoma cell lines. Int J Oncol 18:409–420. https://doi.org/10.3892/ijo.2015.3240
doi: 10.3892/ijo.2015.3240
Namwan N, Senawong G, Phaosiri C, Kumboonma P, Somsakeesit L-O, Samankul A, Leerat C, Senawong T (2022) HDAC inhibitory and anti-cancer activities of curcumin and curcumin derivative CU17 against human lung cancer A549 Cells. Molecules 27(13):4014. https://doi.org/10.3390/molecules27134014
doi: 10.3390/molecules27134014
pubmed: 35807258
pmcid: 9268269
Saenglee S, Senawong G, Jeeunngoi J, Jogloy S, Ketterman A, Sripa B, Senawong T (2020) Peanut testa extracts enhance anticancer effect of cisplatin against human cholangiocarcinoma cells via modulation of histone deacetylase inhibitory activity. Asian Pac J Trop Biomed 10(8):369–378. https://doi.org/10.4103/2221-1691.287163
doi: 10.4103/2221-1691.287163