Transcription factor PpNAC1 and DNA demethylase PpDML1 synergistically regulate peach fruit ripening.
DAP-seq
DNA methylation
fruit flavor
peach
ripening
softening
transcription factor
Journal
Plant physiology
ISSN: 1532-2548
Titre abrégé: Plant Physiol
Pays: United States
ID NLM: 0401224
Informations de publication
Date de publication:
22 Nov 2023
22 Nov 2023
Historique:
received:
07
08
2023
revised:
26
10
2023
accepted:
27
10
2023
medline:
22
11
2023
pubmed:
22
11
2023
entrez:
22
11
2023
Statut:
aheadofprint
Résumé
Fruit ripening is accompanied by dramatic changes in color, texture, and flavor and is regulated by transcription factors (TFs) and epigenetic factors. However, the detailed regulatory mechanism remains unclear. Gene expression patterns suggest that PpNAC1 (NAM/ATAF1/2/CUC) TF plays a major role in peach (Prunus persica) fruit ripening. DNA affinity purification (DAP)-seq combined with transactivation tests demonstrated that PpNAC1 can directly activate the expression of multiple ripening-related genes, including ACC synthase1 (PpACS1) and ACC oxidase1 (PpACO1) involved in ethylene biosynthesis, pectinesterase1 (PpPME1), pectate lyase1 (PpPL1) and polygalacturonase1 (PpPG1) related to cell wall modification, and lipase1 (PpLIP1), fatty acid desaturase (PpFAD3-1) and alcohol acyltransferase1 (PpAAT1) involved in volatiles synthesis. Overexpression of PpNAC1 in the tomato (Solanum lycopersicum) nor (non-ripening) mutant restored fruit ripening, and its transient overexpression in peach fruit induced target gene expression, supporting a positive role of PpNAC1 in fruit ripening. The enhanced transcript levels of PpNAC1 and its target genes were associated with decreases in their promoter mCG methylation during ripening. Declining DNA methylation was negatively associated with increased transcripts of DNA demethylase1 (PpDML1), whose promoter is recognized and activated by PpNAC1. We propose that decreased methylation of the promoter region of PpNAC1 leads to a subsequent decrease in DNA methylation levels and enhanced transcription of ripening-related genes. These results indicate that positive feedback between PpNAC1 and PpDML1 plays an important role in directly regulating expression of multiple genes required for peach ripening and quality formation.
Identifiants
pubmed: 37992120
pii: 7441650
doi: 10.1093/plphys/kiad627
pii:
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© The Author(s) 2023. Published by Oxford University Press on behalf of American Society of Plant Biologists. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.