FAM71D is dispensable for spermatogenesis and male fertility in mice.

CRISPR/Cas9 FAM71D male fertility sperm flagellum testis

Journal

Molecular reproduction and development
ISSN: 1098-2795
Titre abrégé: Mol Reprod Dev
Pays: United States
ID NLM: 8903333

Informations de publication

Date de publication:
22 Nov 2023
Historique:
revised: 03 10 2023
received: 10 06 2023
accepted: 20 10 2023
medline: 22 11 2023
pubmed: 22 11 2023
entrez: 22 11 2023
Statut: aheadofprint

Résumé

In mammals, the generation of sperm cells capable of fertilization is a highly complex process including spermatogenesis in the testis and maturation in the epididymis. In our previous study, we have demonstrated that FAM71D (Family with sequence similarity 71, member D), which could interact with calmodulin, was highly expressed in human and mouse testis. To investigate the physiological role of FAM71D in spermatogenesis, we next generate Fam71d loss-of-function mouse model using CRISPR/Cas9 technology. We performed immunofluorescence and RT-qPCR to examine the protein and mRNA expression in testicular cells. We found that FAM71D was predominantly localized in the round and elongated spermatids. And FAM71D KO mice displayed normal development of germ cell and fertility. Furthermore, testicular histology and sperm concentration showed no significant difference between WT and KO mice. These data demonstrate that FAM71D is dispensable for mouse spermatogenesis and male fertility.

Identifiants

pubmed: 37992210
doi: 10.1002/mrd.23716
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Medical Scientific Research Foundation of Guangdong Province
ID : A2022427

Informations de copyright

© 2023 Wiley Periodicals LLC.

Références

Baccetti, B., Collodel, G., Estenoz, M., Manca, D., Moretti, E., & Piomboni, P. (2005). Gene deletions in an infertile man with sperm fibrous sheath dysplasia. Human Reproduction, 20, 2790-2794.
Ben Khelifa, M., Coutton, C., Zouari, R., Karaouzène, T., Rendu, J., Bidart, M., Yassine, S., Pierre, V., Delaroche, J., Hennebicq, S., Grunwald, D., Escalier, D., Pernet-Gallay, K., Jouk, P. S., Thierry-Mieg, N., Touré, A., Arnoult, C., & Ray, P. F. (2014). Mutations in DNAH1, which encodes an inner arm heavy chain dynein, lead to male infertility from multiple morphological abnormalities of the sperm flagella. The American Journal of Human Genetics, 94, 95-104.
Clermont, Y. (1972). Kinetics of spermatogenesis in mammals: Seminiferous epithelium cycle and spermatogonial renewal. Physiological Reviews, 52, 198-236.
Coutton, C., Escoffier, J., Martinez, G., Arnoult, C., & Ray, P. F. (2015). Teratozoospermia: Spotlight on the main genetic actors in the human. Human Reproduction Update, 21, 455-485.
Escalier, D. (2006). Knockout mouse models of sperm flagellum anomalies. Human Reproduction Update, 12, 449-461.
Gnoth, C., Godehardt, E., Frank-Herrmann, P., Friol, K., Tigges, J., & Freundl, G. (2005). Definition and prevalence of subfertility and infertility. Human Reproduction, 20, 1144-1147.
Krausz, C., & Riera-Escamilla, A. (2018). Genetics of male infertility. Nature Reviews Urology, 15, 369-384.
Liu, X. X., Zhang, H., Shen, X. F., Liu, F. J., Liu, J., & Wang, W. J. (2016). Characteristics of testis-specific phosphoglycerate kinase 2 and its association with human sperm quality. Human Reproduction, 31, 273-279.
Ma, Q., Li, Y., Luo, M., Guo, H., Lin, S., Chen, J., Du, Y., Jiang, Z., & Gui, Y. (2017). The expression characteristics of FAM71D and its association with sperm motility. Human Reproduction, 32, 2178-2187.
Merveille, A. C., Davis, E. E., Becker-Heck, A., Legendre, M., Amirav, I., Bataille, G., Belmont, J., Beydon, N., Billen, F., Clément, A., Clercx, C., Coste, A., Crosbie, R., de Blic, J., Deleuze, S., Duquesnoy, P., Escalier, D., Escudier, E., Fliegauf, M., … Amselem, S. (2011). CCDC39 is required for assembly of inner dynein arms and the dynein regulatory complex and for normal ciliary motility in humans and dogs. Nature Genetics, 43, 72-78.
Morohoshi, A., Miyata, H., Oyama, Y., Oura, S., Noda, T., & Ikawa, M. (2021). FAM71F1 binds to RAB2A and RAB2B and is essential for acrosome formation and male fertility in mice. Development, 148, 148.
Odet, F., Gabel, S. A., Williams, J., London, R. E., Goldberg, E., & Eddy, E. M. (2011). Lactate dehydrogenase C and energy metabolism in mouse sperm. Biology of Reproduction, 85, 556-564.
Petit, F. G., Kervarrec, C., Jamin, S. P., Smagulova, F., Hao, C., Becker, E., Jégou, B., Chalmel, F., & Primig, M. (2015). Combining RNA and protein profiling data with network interactions identifies genes associated with spermatogenesis in mouse and human. Biology of Reproduction, 92, 71.
Tang, S., Wang, X., Li, W., Yang, X., Li, Z., Liu, W., Li, C., Zhu, Z., Wang, L., Wang, J., Zhang, L., Sun, X., Zhi, E., Wang, H., Li, H., Jin, L., Luo, Y., Wang, J., Yang, S., & Zhang, F. (2017). Biallelic mutations in CFAP43 and CFAP44 cause male infertility with multiple morphological abnormalities of the sperm flagella. The American Journal of Human Genetics, 100, 854-864.
Turner, R. M. (2006). Moving to the beat: A review of mammalian sperm motility regulation. Reproduction, Fertility, and Development, 18, 25-38.
Wang, X., Jin, H., Han, F., Cui, Y., Chen, J., Yang, C., Zhu, P., Wang, W., Jiao, G., Wang, W., Hao, C., & Gao, Z. (2017). Homozygous DNAH1 frameshift mutation causes multiple morphological anomalies of the sperm flagella in Chinese. Clinical Genetics, 91, 313-321.
Yang, S. M., Li, H. B., Wang, J. X., Shi, Y. C., Cheng, H. B., Wang, W., Li, H., Hou, J. Q., & Wen, D. G. (2015). Morphological characteristics and initial genetic study of multiple morphological anomalies of the flagella in China. Asian Journal of Andrology, 17, 513-515.
Zheng, D., Zhou, Z., Li, R., Wu, H., Xu, S., Kang, Y., Cao, Y., Chen, X., Zhu, Y., Xu, S., Chen, Z. J., Mol, B. W., & Qiao, J. (2019). Consultation and treatment behaviour of infertile couples in China: A population-based study. Reproductive BioMedicine Online, 38, 917-925.

Auteurs

Shaomei Mo (S)

Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Department of Urology, Peking University Shenzhen Hospital, Clinical College of Anhui Medical University, Shenzhen, Guangdong, China.
The Fifth Clinical Medical College of Anhui Medical University, Hefei, Anhui, China.

Keming Deng (K)

The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China.

Congcong Cao (C)

Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Department of Urology, Peking University Shenzhen Hospital, Clinical College of Anhui Medical University, Shenzhen, Guangdong, China.
The Fifth Clinical Medical College of Anhui Medical University, Hefei, Anhui, China.

Yaoting Gui (Y)

Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Department of Urology, Peking University Shenzhen Hospital, Clinical College of Anhui Medical University, Shenzhen, Guangdong, China.
The Fifth Clinical Medical College of Anhui Medical University, Hefei, Anhui, China.

Qian Ma (Q)

Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Department of Urology, Peking University Shenzhen Hospital, Clinical College of Anhui Medical University, Shenzhen, Guangdong, China.
The Fifth Clinical Medical College of Anhui Medical University, Hefei, Anhui, China.

Classifications MeSH