Assessment of deep learning-based auto-contouring on interobserver consistency in target volume and organs-at-risk delineation for breast cancer: Implications for RTQA program in a multi-institutional study.
Auto-contouring
Breast cancer
Deep learning
Inter-observer variation
RTQA
Journal
Breast (Edinburgh, Scotland)
ISSN: 1532-3080
Titre abrégé: Breast
Pays: Netherlands
ID NLM: 9213011
Informations de publication
Date de publication:
15 Nov 2023
15 Nov 2023
Historique:
received:
18
09
2023
revised:
30
10
2023
accepted:
09
11
2023
medline:
23
11
2023
pubmed:
23
11
2023
entrez:
22
11
2023
Statut:
aheadofprint
Résumé
To quantify interobserver variation (IOV) in target volume and organs-at-risk (OAR) contouring across 31 institutions in breast cancer cases and to explore the clinical utility of deep learning (DL)-based auto-contouring in reducing potential IOV. In phase 1, two breast cancer cases were randomly selected and distributed to multiple institutions for contouring six clinical target volumes (CTVs) and eight OAR. In Phase 2, auto-contour sets were generated using a previously published DL Breast segmentation model and were made available for all participants. The difference in IOV of submitted contours in phases 1 and 2 was investigated quantitatively using the Dice similarity coefficient (DSC) and Hausdorff distance (HD). The qualitative analysis involved using contour heat maps to visualize the extent and location of these variations and the required modification. Over 800 pairwise comparisons were analysed for each structure in each case. Quantitative phase 2 metrics showed significant improvement in the mean DSC (from 0.69 to 0.77) and HD (from 34.9 to 17.9 mm). Quantitative analysis showed increased interobserver agreement in phase 2, specifically for CTV structures (5-19 %), leading to fewer manual adjustments. Underlying IOV differences causes were reported using a questionnaire and hierarchical clustering analysis based on the volume of CTVs. DL-based auto-contours improved the contour agreement for OARs and CTVs significantly, both qualitatively and quantitatively, suggesting its potential role in minimizing radiation therapy protocol deviation.
Identifiants
pubmed: 37992527
pii: S0960-9776(23)00725-7
doi: 10.1016/j.breast.2023.103599
pmc: PMC10700624
pii:
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
103599Informations de copyright
Copyright © 2023. Published by Elsevier Ltd.
Références
J Med Imaging Radiat Oncol. 2016 Jun;60(3):393-406
pubmed: 27170216
Phys Imaging Radiat Oncol. 2019 Dec 17;13:1-6
pubmed: 33458300
Int J Radiat Oncol Biol Phys. 2009 Mar 1;73(3):944-51
pubmed: 19215827
Radiother Oncol. 2015 Jan;114(1):3-10
pubmed: 25630428
Breast. 2020 Feb;49:194-200
pubmed: 31931265
Radiother Oncol. 2016 Nov;121(2):169-179
pubmed: 27729166
Radiother Oncol. 2017 Apr;123(1):15-21
pubmed: 28236539
Br J Radiol. 2012 Aug;85(1016):e530-6
pubmed: 22815423
Acta Oncol. 2017 Aug;56(8):1081-1088
pubmed: 28534430
Int J Radiat Oncol Biol Phys. 2015 Feb 1;91(2):419-26
pubmed: 25636764
J Clin Oncol. 2010 Jun 20;28(18):2996-3001
pubmed: 20479390
Radiother Oncol. 2019 Aug;137:159-166
pubmed: 31108277
Int J Radiat Oncol Biol Phys. 2010 Jul 15;77(4):1166-70
pubmed: 19836158
Radiother Oncol. 2021 Jan;154:179-186
pubmed: 32980384
Pract Radiat Oncol. 2022 Nov-Dec;12(6):e486-e492
pubmed: 35690353
J Med Internet Res. 2021 Jul 12;23(7):e26151
pubmed: 34255661
J Breast Cancer. 2022 Oct;25(5):349-365
pubmed: 36265885
Radiat Oncol. 2014 Sep 08;9:198
pubmed: 25199768
Radiol Oncol. 2016 May 09;50(3):254-62
pubmed: 27679540
Radiat Oncol. 2021 Oct 14;16(1):203
pubmed: 34649569
Radiother Oncol. 2010 Mar;94(3):286-91
pubmed: 20199818
Anticancer Res. 2021 Jun;41(6):3145-3152
pubmed: 34083309
Int J Radiat Oncol Biol Phys. 2021 Apr 1;109(5):1311-1324
pubmed: 33321192
Phys Imaging Radiat Oncol. 2022 May 14;22:104-110
pubmed: 35602549
Radiat Oncol. 2021 Jun 28;16(1):120
pubmed: 34183040
Nat Med. 2021 Jun;27(6):999-1005
pubmed: 34083812
J Med Imaging Radiat Oncol. 2013 Apr;57(2):247-57
pubmed: 23551788
Radiother Oncol. 2020 Dec;153:139-145
pubmed: 32991916
Radiother Oncol. 2019 Aug;137:1-8
pubmed: 31039468